Способ определения температурных полей в режущей части инструмента в процессе резания

Изобретение относится к измерительной технике, а именно к способам измерения температуры твердых тел. Способ осуществляется следующим образом. Предварительно на заготовке делают с необходимым шагом поперечные пазы небольшой ширины, а боковую поверхность материала режущей части инструмента полируют. Освещают боковую полированную поверхность инструмента пучком когерентного монохроматического излучения, формируют интерференционную картину в предметной плоскости видеокамеры в результате взаимодействия отраженного и опорного пучков, непрерывно регистрируют с помощью видеосъемки изменения интерференционных картин. Далее осуществляют процесс резания на интересующих режимах, а по изменению интерференционных картин до резания и в моменты нахождения режущей части инструмента в поперечных пазах заготовки определяют температурные поля режущей части инструмента в процессе резания. После получения значений температур в каждой из рассматриваемых точек поля режущей части инструмента в каждый из интересующих моментов времени, повторно определяют температурное поле путем коррекции значений коэффициента температурного расширения материала инструмента в зависимости от значений температур, полученных при предыдущем определении температурного поля в рассматриваемый момент времени. Технический результат - повышение точности определения значений температур по всему полю режущей части инструмента непосредственно в процессе резания на реальных режимах. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к измерительной технике, а именно к способам измерения температуры твердых тел, в частности в режущей части инструмента в процессе резания.

Известен бесконтактный цветовой способ измерения температуры режущей части инструмента с помощью фотоэлемента (см. Остафьев В.А., Вестфаль А.Н., Чернявская А.А. Устройство для бесконтактного измерения температуры в зоне резания цветовым методом // Известия вузов - Машиностроение - 1976. - №4. - с.159-162), заключающийся в том, что инфракрасное излучение нагретого тела попеременно подают на фотоэлемент через два светофильтра, пропускающих только излучения с определенной длиной волны, и по разности полученных на выходе фотоэлемента двух импульсов электрического напряжения определяют температуру нагретого тела.

Известный способ позволяет производить измерения лишь в диапазоне от 300°С до 1000°С и с площади излучения в один квадратный миллиметр и более. Тогда как вся изучаемая зона контакта в режущей части инструмента составляет площадь в один квадратный миллиметр или менее, то исследование распределения температур в таких условиях при определении температурных полей известным способом не представляется возможным. Кроме того, при небольших скоростях резания максимальная температура в зоне контакта составляет порядка 120-300°С, что находится за пределами возможностей известного способа.

Известен способ определения температур по длине контакта стружки с передней поверхностью резца (а.с. СССР №416166, В01В 1/00, опубл. 1974, Бюл. №7) с помощью естественной термопары, образуемой стружкой и проводящей пластиной, расположенной под углом к главной режущей кромке и на различном расстоянии от нее. В процессе обработки детали в виде диска резцу, кроме подачи, сообщают дополнительное движение вдоль главной режущей кромки и регистрируют величину термо-ЭДС в функции дополнительного перемещения резца. Термо-ЭДС, возникающая между стружкой и пластиной, в каждый момент времени соответствует температуре резания в точке, лежащей на расстоянии от главной режущей кромки до точки контакта стружки с проводящей пластиной.

Известный способ позволяет получить распределение значений температур лишь по передней поверхности резца, а не полю режущего клина.

Известен способ определения температуры по длине контакта задней поверхности резца (а.с. СССР №1355358, В01В 1/00, опубл. 1987, Бюл. №44), заключающийся в измерении термо-ЭДС естественной термопары, образуемой заготовкой и задней поверхностью резца. Для этого обработку производят резцом, разрезанным по диагонали фаски на задней поверхности, имеющей нулевой задний угол и равной по площади величине износа резца по задней поверхности. Термопару составляют заготовка и изолированная от передней части и от станка задняя часть разрезного резца. При этом заготовке сообщают дополнительное движение вдоль главной режущей кромки, начиная его с меньшей длины контакта задней поверхности изолированной части резца, и определяют величину площади контакта с заготовкой, а о искомой температуре судят по величине приращения термо-ЭДС и площадок контакта вдоль главной режущей кромки.

Известный способ позволяет получить значения температур лишь по задней поверхности резца, и также не позволяет определить картину температур по всему полю режущей части инструмента.

Известен способ определения температуры на поверхности режущего инструмента (пат. РФ №2100173, B23Q 11/00, опубл. 27.12.1997), в котором на указанные поверхности электроискровым методом наносят многослойное покрытие из металлов и их сплавов таким образом, чтобы температура плавления слоев убывала по мере нанесения покрытия, а при резании в процессе нагревания инструмента и последовательного оплавления слоев покрытия фиксировались границы распределения постоянных температур на поверхностях инструмента.

Однако данный способ недостаточно точен, не позволяет измерить температуру сразу во всех точках исследуемой поверхности, так как номенклатура металлов с низкой температурой плавления весьма ограничена. Также этот способ не позволяет проводить измерение температурного поля в процессе резания, так как он фиксирует лишь изотермы с максимальными значениями температур, связанных с температурами плавления используемых сплавов. Кроме того, он отличается сложностью нанесения многослойных покрытий и необходимостью проведения повторных экспериментов с нанесением многослойного покрытия из другого сочетания сплавов для того, чтобы увеличить количество получаемых изотерм, которые связаны с температурами плавления этих сплавов.

Известен способ определения температурных полей в режущей части инструмента, выбранный в качестве прототипа (см. Верещака А.С. и др. Исследование теплового состояния режущих инструментов с помощью многопозиционных термоиндикаторов // Вестник машиностроения. - 1986. - №1, - с.45-49; также см. Верещака А.С., Третьяков И.П. Режущие инструменты с износостойкими покрытиями. - М.: Машиностроение, 1986, - с.108-109), с помощью цветовых многопозиционных термоиндикаторных веществ (ЦТИВ), заключающийся в том, что состав, включающий в себя ЦТИВ, наносят на рабочие поверхности режущей части инструмента, после работы инструмента в течение определенного времени при интересующих режимах резания исследуют изменение цветовой картины, по которой определяют поле распределения температур.

Однако ЦТИВ инертны, время их срабатывания составляет более одной секунды, что является довольно длительным в отношении динамики процесса резания и позволяет проводить измерение температурного поля в процессе резания лишь на микроскоростях. Кроме того, температурные поля получаются с невысокой точностью, так как термоиндикаторы показывают лишь приближенную картину распределения температур в виде линий термопереходов и при этом фиксируется только максимальная температура процесса, возникшая в каждой конкретной точке исследуемой поверхности.

Задачей настоящего изобретения является повышение точности определения значений температур по всему полю режущей части инструмента непосредственно в процессе резания на реальных режимах.

Технический результат при решении поставленной задачи заключается в использовании высокоточного безинерционного бесконтактного интерферо-метрического измерения изменений, связанных с температурным расширением тела, положения любой из интересующих точек исследуемого поля режущей части инструмента.

Указанный технический результат достигается следующим образом. Предварительно на заготовке делают с необходимым шагом поперечные пазы небольшой ширины, а боковую поверхность материала режущей части инструмента полируют. Освещают боковую полированную поверхность инструмента пучком когерентного монохроматического излучения, формируют интерференционную картину в предметной плоскости видеокамеры в результате взаимодействия отраженного и опорного пучков, непрерывно регистрируют с помощью видеосъемки изменения интерференционных картин. Далее осуществляют процесс резания на интересующих режимах, а по изменению интерференционных картин до резания и в моменты нахождения режущей части инструмента в поперечных пазах определяют температурные поля режущей части инструмента в процессе резания. В случае, если материал режущей части инструмента не обладает отражающими способностями, то после полирования на него наносят зеркальное покрытие. После получения значений температур в каждой из рассматриваемых точек поля режущей части инструмента в каждый из интересующих моментов времени, повторно определяют температурное поле путем коррекции значений коэффициента температурного расширения материала инструмента в зависимости от значений температур, полученных при предыдущем определении температурного поля в рассматриваемый момент времени. Данная коррекция значений коэффициента температурного расширения в определении температурного поля может быть проведена неоднократно до требуемой степени сходимости.

На фиг.1 изображена оптическая схема, поясняющая реализацию описываемого способа; на фиг.2 - схема процесса резания заготовки с пазами; на фиг.3 приведены видеограммы интерференционных картин соответственно до резания и в момент нахождения режущей части инструмента в одном из поперечных пазов в процессе резания; на фиг.4 - график зависимости коэффициента температурного расширения α от температуры Т.

Способ осуществляется следующим образом. Предварительно на заготовке 1 делают с необходимым шагом поперечные пазы 2 небольшой ширины, а боковую поверхность 3 материала режущей части инструмента 4 полируют. После установки инструмента 4 в резцедержателе станка освещают боковую поверхность 3 режущей части пучком когерентного монохроматического излучения от оптического квантового генератора (лазера) 5. Для увеличения диаметра пучка в соответствии с исследуемой площадью зеркально-полированной боковой поверхности 3 режущей части используется коллиматор 6. Интерференционную картину формируют в предметной плоскости видеокамеры 7 в результате взаимодействия отраженного и опорного пучков, получаемых с помощью интерферометра, например, включающего в себя полупрозрачное зеркало 8 и оптический клин 9. В данном случае оптический клин 9 жестко связан с исследуемым инструментом 4 через специальный держатель 10. Изображения интерференционных картин непрерывно регистрируют путем видеосъемки с помощью видеоконтрольного блока, состоящего из скоростной видеокамеры 7 и средства записи 11. Далее осуществляют процесс резания заготовки 1 (см. фиг.2), например, в виде диска, на интересующих режимах (скорости резания V и подаче S). По изменению интерференционных картин (см. фиг.3) до резания и в моменты нахождения режущей части инструмента 4 в поперечных пазах 2 заготовки 1 в процессе резания определяют температурные поля по формуле

,

где Т0 - начальная температура режущего клина до резания (Т0=20°С);

Tt, - температура в интересующий момент времени в рассматриваемой точке режущего клина;

mt - разность порядков интерференционных полос в рассматриваемой точке режущего клина до резания и в момент нахождения режущей части инструмента в поперечном пазу в процессе резания;

λ - длина волны монохроматического когерентного излучения;

t - толщина режущего клина до его деформирования при температуре Т0;

α - коэффициент температурного расширения материала инструмента.

В случае, если материал режущей части инструмента не обладает отражающими способностями, то после полирования на него наносят зеркальное покрытие, например из серебра, путем напыления или химической реакцией типа "серебряное зеркало". После получения значений температур в каждой из рассматриваемых точек режущей части инструмента в каждый из интересующих моментов времени, повторно определяют температурное поле путем коррекции значений коэффициента температурного расширения материала инструмента в зависимости от значений температур, полученных при предыдущем определении температурного поля в рассматриваемый момент времени, по формуле

,

где Тк - скорректированное значение температуры;

Тн - первоначально-определенное значение температуры;

αн - начальное значение коэффициента температурного расширения;

αк - скорректированное значение коэффициента температурного расширения, которое определяется по формуле

,

где α1, T1, α2, Т2 - значения коэффициентов температурного расширения α и температур Т соответственно для реперных точек 1 и 2, взятых из справочных данных (см. фиг.4).

Таким образом, описанный способ определения температурных полей позволяет осуществить высокоточные безинерционные бесконтактные измерения изменения значений температур по всему полю режущей части инструмента непосредственно в процессе резания на реальных режимах, что особенно важно для изучения динамики прогрева режущей части инструмента при врезании, когда возникают большие градиенты температур.

1. Способ определения температурных полей в режущей части инструмента в процессе резания, заключающийся в том, что осуществляют процесс резания на интересующих режимах, выводят инструмент из зоны резания и по изменению картин на поверхности режущей части инструмента определяют поле температур, отличающийся тем, что на заготовке делают с необходимым шагом поперечные пазы небольшой ширины, полируют боковую поверхность материала режущей части инструмента, освещают боковую полированную поверхность пучком когерентного монохроматического излучения, формируют интерференционную картину в предметной плоскости видеокамеры в результате взаимодействия отраженного и опорного пучков, регистрируют с помощью видеосъемки изменения интерференционных картин, связанных с перемещениями боковой поверхности, а по изменению интерференционных картин до резания и в моменты нахождения режущей части инструмента в поперечных пазах заготовки определяют температурные поля режущей части инструмента в указанные моменты процесса резания.

2. Способ по п.1, отличающийся тем, что на боковую полированную поверхность материала режущей части инструмента, выполненную из неотражающего материала, наносят зеркальное покрытие.

3. Способ по пп.1 и 2, отличающийся тем, что температурное поле режущей части инструмента, полученное в каждый из интересующих моментов времени, определяют повторно путем коррекции значений коэффициента температурного расширения материала инструмента в каждой из рассматриваемых точек в зависимости от значений температур, полученных при предыдущем определении температурного поля в рассматриваемый момент времени.



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно к способам измерения температуры твердых тел. .

Изобретение относится к энергетике, в частности к датчикам температуры, используемым в газогорелочных устройствах для сжигания газа в котлах наружного размещения, и может быть использовано в бытовых газовых аппаратах для автоматического поддержания температуры теплоносителя.

Изобретение относится к температурным измерениям и может быть использовано в пожарной службе для анализа общей картины аварийной ситуации. .

Изобретение относится к авиационной технике, в частности, к устройствам для отключения подогревателей летательных аппаратов при достижении заданной температуры рабочей среды в условиях воздействия широкого диапазона вибрационных нагрузок, и может быть использовано в системах автоматики для терморегулирования жидкостей и газовой среды, а также для точного измерения температуры во взаимодействии с индикаторными часами.

Изобретение относится к охлаждающим устройствам, в частности форсункам, используемым при механической обработке материалов, в частности взрывчатых веществ (ВВ) при утилизации боеприпасов.

Изобретение относится к машиностроению и может быть использовано в ручных машинах. .

Изобретение относится к технологии генерации газокапельных струй эжекцией и может быть использовано в машиностроении, например, для нанесения расплавленного распыленного твердого смазочного материала на шлифовальный круг.

Изобретение относится к обработке металлов и предназначено для охлаждения и смазки режущих инструментов и обрабатываемых изделий при сверлении или расточке глубоких отверстий.

Изобретение относится к машиностроению, а именно к средствам измерения тепловой деформации шпиндельного узла станка. .

Изобретение относится к области станкостроения, в частности к устройству металлорежущего станка и его шпинделя, и предназначено для обнаружения тепловой деформации шпинделя в шпиндельном узле.

Изобретение относится к машиностроению и может быть использовано для подачи смазочных материалов при металлообработке. .

Изобретение относится к устройству и способу охлаждения режущего средства в машинах для разрезания длинных рулонов. .

Изобретение относится к области машиностроения и может быть использовано при внутреннем шлифовании заготовок с подачей смазочно-охлаждающей жидкости (СОЖ) в зону шлифования.

Изобретение относится к машиностроению и может быть использовано для крепления заготовок с высоким коэффициентом теплового расширения на станке для прецизионной сухой механической обработки заготовок для их точной сборки.
Наверх