Способ получения стальной трубной заготовки

Изобретение относится к литейному производству, в частности к получению стальной трубной заготовки с упрочненной внешней и внутренней поверхностями. Расплав из сталеразливочного ковша подают во вращающуюся со скоростью 600 об/мин литейную форму. В струю расплава стали подают тугоплавкие дисперсные частицы карбида вольфрама. После заливки 25% расплава подачу карбида вольфрама прекращают. Далее в струю расплава подают частицы карбида кремния и одновременно увеличивают вращение формы до 800 об/мин. Заканчивают подачу частиц карбида кремния после заливки 75% расплава. Затем в струю расплава подают частицы карбида титана и одновременно уменьшают скорость вращения до первоначального значения 600 об/мин. Заканчивают подачу частиц карбида титана с окончанием разливки. Обеспечивается получение трубной заготовки с высокими жаропрочными свойствами в средней части и высокими прочностными свойствами на внутренней и внешней поверхности. 1 ил.

 

Изобретение относится к технологии изготовления трубной заготовки методом центробежного литья с упрочнением внешней и внутренней поверхности дисперсной твердосплавной фазой, которая может быть применена в металлургической и других отраслях промышленности.

Известен способ центробежного литья вокруг горизонтальной оси, включающий опоку, механизм вращения и литниковую систему, а заполнение формы и затвердевание отливки происходит в поле действия центробежных сил. Способ позволяет получать трубную заготовку (Технология литейного производства: Специальные виды литья: Учебник для студентов высших учебных заведений / Э.Ч.Гини, A.M.Зарубин, В.А.Рыбкин; под ред. В.А.Рыбкина. - М.: Издательский центр «Академия», 2005, 352 с.). Недостатком способа является необходимость дополнительных технических операций с целью обеспечения в получаемой заготовке нужных прочностных, коррозионных и жаростойких свойств.

В качестве ближайшего аналога выбран способ формирования стальной трубной заготовки путем центробежного литья, включающий заливку расплава во вращающуюся вокруг горизонтальной оси форму и упрочнение поверхности заготовки путем подачи через дозатор в заливочный желоб в струю расплава тугоплавких дисперсных частиц, при этом для упрочнения внешней поверхности осуществляют подачу дисперсных частиц с плотностью более 6000 кг/м3 с первыми порциями расплава и заканчивают подачу после заливки 75% расплава, а для упрочнения внутренней поверхности осуществляют подачу тугоплавких частиц с плотностью менее 5000 кг/м3 после 25% расплава и заканчивают подачу с концом разливки (RU №2381087, B22D 13/00, опубл. 10.02.2010). Способ обеспечивает возможность упрочнения внешней и внутренней поверхности получаемой заготовки. Однако таким способом возможно получить трубную заготовку, упрочненную только на наружной и/или внутренней поверхности.

Задачей изобретения является получение трубной заготовки с обеспечением внешней и внутренней поверхности высокими прочностными свойствами и обеспечение придания средней части заготовки высоких жаропрочных свойств.

Указанная задача решается тем, что в способе получения стальной трубной заготовки путем центробежного литья, включающем заливку расплава во вращающуюся вокруг горизонтальной оси форму и упрочнение поверхности заготовки путем подачи через дозатор в заливочный желоб в струю расплава тугоплавких дисперсных частиц, согласно изобретению скорость вращающейся вокруг горизонтальной оси формы изменяют в течение времени заливки, при этом с первыми порциями расплава в заливочный желоб подают частицы карбидов вольфрама при скорости вращения формы 600 об/мин, а заканчивают подачу частиц карбидов вольфрама после заливки 25% расплава, далее в заливочный желоб подают частицы карбида кремния и одновременно увеличивают скорость вращения формы до 800 об/мин, а заканчивают подачу частиц после заливки 75% расплава, затем в заливочный желоб подают частицы карбида титана и одновременно уменьшают скорость вращения до первоначального значения 600 об/мин, а заканчивают подачу частиц с окончанием заливки.

В предлагаемом способе для упрочнения внешней поверхности заготовки тугоплавкие дисперсные частицы карбида вольфрама (WC) начинают подавать в заливочный желоб с первыми порциями расплава, а заканчивают - после заливки 25% расплава.

Для придания получаемой заготовке высоких жаропрочных свойств тугоплавкие дисперсные частицы карбида кремния (SiC) начинают подавать в заливочный желоб после заливки 25% расплава и заканчивают после 75% расплава.

Для упрочнения внутренней поверхности получаемой заготовки тугоплавкие дисперсные частицы карбида титана (TiC) начинают подавать в заливочный желоб после заливки 75% расплава, а заканчивают с окончанием заливки.

Технический результат изобретения заключается в получении полой трубной заготовки с возможностью обеспечения ее высокими жаропрочными в средней части заготовки и высокими прочностными свойствами на внутренней и внешней поверхности.

Технический результат достигается тем, что трубная заготовка формируется путем центробежного литья, включающего заливку расплава во вращающуюся форму, а в заливочный желоб в струю расплава через дозатор подают тугоплавкие дисперсные частицы и вращение формы осуществляют вокруг горизонтальной оси. Если плотность тугоплавкой дисперсной частицы, погруженной в расплав, отличается от плотности расплава, то сила, действующая на частицу, не уравновешивается их собственной центробежной и Архимедовой силой. Поэтому возникают условия для перемещения частиц в ту или другую сторону, т.е. на внутреннюю или внешнюю поверхность формируемой заготовки. Для управления перемещением частиц используют изменение скорости вращения металлической формы на величину, достаточную для уравновешивания центробежной и Архимедовой силы. Тогда частица, на которую действуют уравновешенные центробежные и Архимедова силы, не всплывает, а, соприкасаясь с фронтом кристаллизации, захватывается растущими дендритами.

Для упрочнения внешней поверхности трубной заготовки тугоплавкие дисперсные частицы карбида вольфрама (WC) плотностью 15800 кг/м3 подают в заливочный желоб с первыми порциями расплава, а заканчивают подачу после заливки 25% расплава. В этом случае значение центробежной силы преобладает над Архимедовой силой, и частица в расплаве движется от оси вращения к фронту кристаллизации. Она оказывается прижатой расплавом к фронту кристаллизации, не всплывает и захватывается растущими дендритами. В результате происходит упрочнение внешней поверхности заготовки.

Для придания получаемой заготовке высоких жаропрочных свойств тугоплавкие дисперсные частицы карбида кремния (SiC) плотностью 3200 кг/м3 начинают подавать в заливочный желоб после заливки 25% расплава, единовременно увеличив скорость вращения формы на величину, достаточную для уравновешивания центробежной и Архимедовой силы. В этом случае частица, на которую действуют уравновешенные центробежные и Архимедова силы, не всплывает, а, соприкасаясь с фронтом кристаллизации, захватывается растущими дендритами. Заканчивают подачу частиц после 75% расплава. В результате получаемая заготовка приобретает жаропрочные свойства.

Для упрочнения внутренней поверхности трубной заготовки тугоплавкие дисперсные частицы карбида титана (TiC) плотностью 1440 кг/м3 начинают подавать в заливочный желоб после заливки 75% расплава, единовременно уменьшая скорость вращения формы до первоначального значения, а заканчивают с окончанием разливки. В этом случае значение Архимедовой силы преобладает над центробежными силами, и частица в расплаве движется к оси вращения, всплывает на свободную поверхность расплава и захватывается растущими дендритами. В результате происходит упрочнение внутренней поверхности заготовки.

Заявителем впервые установлено, что введение тугоплавких дисперсных частиц в расплав и регулировка скорости вращения формы во время разливки при получении трубной заготовки способом центробежного литья позволяют достигнуть высокого уровня жаропрочности и прочности внешней и внутренней поверхности.

Сущность данного способа иллюстрируется чертежом, где на фиг.1 представлена схема получения трубной заготовки методом центробежного литья: 1 - формируемая заготовка, 2 - металлическая форма, 3 - заливочный желоб, 4 - дозатор, 5 - тугоплавкая дисперсная фаза, 6 - расплав, 7 - сталеразливочный ковш.

Примеры осуществления способа.

Пример 1. Трубную заготовку получали из марки сталь 15, выплавленной в индукционной печи. Внешний диаметр заготовки 140 мм, внутренний диаметр 40 мм, длина 140 мм. В качестве упрочняющей фазы использовали карбид вольфрама (WC), плотностью 15800 г/см3 в количестве 120 г, карбид кремния (SiC), плотностью 3200 г/см3 в количестве 120 г и карбид титана (TiC) плотностью 1440 г/см3 в количестве 120 г. Расплав температурой 1650°С из сталезаливочного ковша заливали во вращающуюся со скоростью 600 об/мин металлическую форму с горизонтальной осью вращения через заливочный желоб. В струю стали при помощи дозатора подавали WC. После заливки 25% расплава подачу WC прекращали. Не прерывая процесса заливки, начинали подачу SiC, одновременно увеличив скорость вращения металлической формы до 800 об/мин, для того, чтобы центробежные силы уравнялись с Архимедовыми силами и введенные карбиды не всплывали на свободную поверхность расплава. После заливки 75% расплава подачу SiC прекращали. Не прерывая процесса заливки, начинали подачу TiC, одновременно снизив скорость вращения металлической формы до 600 об/мин. Подачу TiC прекращали после заливки 100% расплава. После полного затвердевания и остановки вращения металлической формы отливку извлекали. Полученная таким способом отливка имела удовлетворительное качество поверхности с плотным строением тела и без усадочных дефектов.

Предложенный способ позволил получить жаропрочную стальную трубную заготовку упрочненной внешней и внутренней поверхностью.

Пример 2.

Трубную заготовку получали из марки У7, выплавленной в индукционной печи. Внешний диаметр заготовки - 200 мм, внутренний - 55 мм, длина 300 мм. В качестве упрочняющей фазы использовали карбид вольфрама (WC) плотностью 15800 г/см3 в количестве 200 г, карбид кремния (SiC), плотностью 3200 г/см3 в количестве 200 г и карбид титана (TiC) плотностью 1440 г/см3 в количестве 200 г. Расплав температурой 1650°С из сталезаливочного ковша заливали во вращающуюся со скоростью 600 об/мин металлическую форму с горизонтальной осью вращения через заливочный желоб. В струю стали при помощи дозатора подавали WC. После заливки 25% расплава подачу WC прекращали. Не прерывая процесса заливки, начинали подачу SiC, одновременно увеличив скорость вращения металлической формы до 800 об/мин, для того, чтобы центробежные силы уравнялись с Архимедовыми силами, и введенные карбиды не всплывали на свободную поверхность расплава. После заливки 75% расплава подачу SiC прекращали. Не прерывая процесса заливки, начинали подачу TiC, одновременно снизив скорость вращения металлической формы до 600 об/мин. Подачу TiC прекращали после заливки 100% расплава. После полного затвердевания и остановки вращения металлической формы отливку извлекали. Полученная таким способом отливка имела удовлетворительное качество поверхности с плотным строением тела и без усадочных дефектов.

Предлагаемый способ позволяет получить жаропрочную стальную трубную заготовку с упрочненной структурой для эксплуатации в условиях высокого износа при высоких температурах.

Способ получения стальной трубной заготовки путем центробежного литья, включающий заливку расплава во вращающуюся вокруг горизонтальной оси форму и упрочнение поверхности заготовки путем подачи через дозатор в заливочный желоб в струю расплава тугоплавких дисперсных частиц, отличающийся тем, что скорость вращающейся вокруг горизонтальной оси формы изменяют в течение времени заливки, при этом с первыми порциями расплава в заливочный желоб подают тугоплавкие дисперсные частицы карбида вольфрама при скорости вращения формы 600 об/мин, а заканчивают подачу тугоплавких дисперсных частиц карбида вольфрама после заливки 25% расплава, далее в заливочный желоб подают тугоплавкие дисперсные частицы карбида кремния и одновременно увеличивают вращение формы до 800 об/мин, а заканчивают подачу тугоплавких дисперсных частиц карбида кремния после заливки 75% расплава, затем в заливочный желоб подают тугоплавкие дисперсные частицы карбида титана и одновременно уменьшают скорость вращения до первоначального значения 600 об/мин, а заканчивают подачу тугоплавких дисперсных частиц карбида титана с окончанием разливки.



 

Похожие патенты:

Изобретение относится к области изготовления тонкостенных высокопрочных корпусов с использованием электрошлаковой технологии получения стальных трубных заготовок с тонкой стенкой.

Изобретение относится к технологии центробежного литья заготовок. .

Изобретение относится к центробежному литью. .

Изобретение относится к космической технологии и может быть применено для изготовления бесшовных цилиндрических оболочек, используемых в качестве основы для строительства жилых, производственных и складских помещений.

Изобретение относится к металлургическому и литейному производству. .

Изобретение относится к литейному производству. .

Изобретение относится к литейному производству и может быть использовано для изготовления труб с толщиной стенки 0,03-0,20 м из различных марок стали типа 08Х18Н10Т, 15Х1М1Ф, например паропроводов атомных и тепловых энергоблоков.
Изобретение относится к литейному производству. .

Изобретение относится к изготовлению стальной трубной заготовки методом центробежного литья с упрочнением внешней, внутренней или одновременно двух поверхностей.
Изобретение относится к литейному производству и может быть использовано при центробежном литье биметаллических чугунных заготовок, например прокатных валков с рабочим слоем из легированного чугуна и сердцевиной с шейками из чугуна с шаровидным графитом

Изобретение относится к обработке металлов давлением и металлургии сплавов на основе алюминия, в частности к способам изготовления кольцевых полуфабрикатов, и может быть использовано в машиностроении для получения цельных полуфабрикатов в виде крупногабаритных втулок (бандажей), т.е

Изобретение относится к морской технике и касается технологии изготовления прочного корпуса подводного аппарата

Изобретение относится к морской технике и касается технологии изготовления прочного корпуса подводного аппарата. Цилиндрическую оболочку прочного корпуса подводного аппарата изготовляют из двух стеклянных слоев, между которыми формируют слой из пеностекла, и металлического покрытия в виде внешней, внутренней и торцевых облицовок, имеющих коэффициент температурного расширения, превышающий его величину у стекла. Внешнюю металлическую облицовку и торцевые металлические облицовки устанавливают в разъемную форму и нагревают до температуры, обеспечивающей качественное формирование внешнего стеклянного слоя, и помещают в центрифугу. Включают центрифугу и подают на внутренние стенки внешней металлической облицовки расплав стекла и посредством центрифуги формируют внешний стеклянный слой. Затем на внешний стеклянный слой посредством центрифуги наносят слой вещества невспененного пеностекла и, после его вспенивания, посредством центрифуги формируют слой пеностекла. На сформированный слой пеностекла при работающей центрифуге наносят расплав стекла и формируют внутренний слой стекла. После чего температуру стеклянного слоя понижают до температуры, обеспечивающей его диффузионную сварку с внутренней металлической облицовкой, и на стеклянный слой подают расплав металла и с помощью центрифуги формируют внутреннюю металлическую облицовку цилиндрической оболочки. Понижают температуру цилиндрической оболочки до температуры стеклования стеклянного слоя. Отжигают цилиндрическую оболочку до полной релаксации напряжений и стабилизации стеклянного слоя. Затем понижают температуру цилиндрической оболочки в разъемной форме до температуры внешней среды и извлекают ее из разъемной формы. Технический результат заключается в упрощении конструкции цилиндрической оболочки и технологии ее изготовления. 1 ил.

Устройство относится к литейному производству цветных металлов и может быть использовано для изготовления заготовок для прессования трубных полуфабрикатов и заготовок для цельнокатаной раскатки колец материалов и изделий из магниевых сплавов. Устройство содержит плавильную печь, герметичную камеру с инертной средой, электрообогреваемый металлопровод, выполненный в виде сифона, один конец которого размещен в плавильной печи с образованием жидкостного затвора из расплава металла, а другой размещен в герметичной камере. В камере установлен вращающийся круглый стол, на котором закреплена литейная цилиндрическая изложница с крышкой и стаканом-дозатором, расположенным соосно с металлопроводом. Вращение изложницы осуществляется при помощи стола, который прикреплен к приводному валу электродвигателя, расположенного вне герметичной камеры. Обеспечивается повышение плотности отливок вследствие уменьшения усадочных пор, раковин, неметаллических включений. 1 ил.

Способ центробежного литья металла включает заливку расплава металла во вращающуюся охлаждаемую форму, выполненную в виде конвертера вертикального типа, подогрев его в окислительной или восстановительной атмосфере с образованием в результате протекающей в расплаве химической реакции легких и тяжелых примесей. Под действием центробежных и гравитационных сил легкие примеси вытесняются на поверхность расплава, а тяжелые примеси уходят на периферию слитка. Летучие примеси не покидают полость формы за счет применения охлаждаемого экрана, установленного над формой. После кристаллизации на внутренней поверхности формы основной части металла слиток переворачивают и сливают часть расплава вместе с легкими примесями. Тяжелые примеси удаляют с периферии затвердевшего слитка. Внутренняя полость формы выполнена в виде конуса, сужающегося кверху для обеспечения удаления слитка после переворота формы со слитком. Форма приводится во вращение потоком воды или воздуха, подаваемого на турбинные лопатки, при этом одновременно осуществляется охлаждение формы и формируемого слитка. Повышается эффективность очистки металла от примесей. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к литейному производству, а именно к центробежному литью. В неподвижную форму заливают расплав и одновременно в струю расплава подают тугоплавкие дисперсные частицы плотностью более 8000 г/см3. После заливки 50% расплава прекращают подачу частиц. Форму приводят во вращение после затвердевания донной части отливки и до полного затвердевания отливки форму останавливают. Обеспечивается получение отливок типа «стакан» с высокими механическими свойствами внешних боковых поверхностей и донной части. 1 ил., 4 пр.
Изобретение относится к литейному производству. Получают расплав чугуна или стали, добавляют в расплав керамические частицы, плотность которых меньше плотности расплава, заливают расплав в предварительно подготовленную форму и охлаждают расплав. Во время охлаждения форму располагают горизонтально так, что керамические частицы собираются на одной торцевой стороне поршневого кольца. Керамические частицы выбирают из группы, содержащей частицы Al2O3, Cr2O3, Fe2O4, TiO2, ZrO2 и их смеси. Поршневое кольцо, имеющее на торцевой стороне износостойкие частицы, обладает хорошими механическими свойствами. 2 н. и 4 з.п. ф-лы.

Изобретение относится к литейному производству, в частности к получению тонкостенных отливок с толщиной стенки 2,5-3,5 мм, диаметром более 1000 мм, из титановых и жаропрочных сплавов, с разноудаленными от оси кольцевыми поверхностями 8, соединенными между собой радиальными ребрами 9. Литниковая система содержит цилиндрический центральный стояк 2, в нижней части выполненный квадратной формы, горизонтальные литниковые ходы 4, размещенные по углам квадрата. Литниковые ходы 4 отклонены под углом 30°С в сторону вращения и снабжены секторальными литниковыми ходами 5, расположенными по концентрическим окружностям, которые соединены с вертикальными питателями 6. Обеспечивается повышение качества тонкостенных за счет спокойного течения потока расплава по окружности при входе в тонкостенную часть формы, без завихрения и заворотов. Литниковая система имеет высокую пропускную способность и компактные размеры. 3 ил.
Наверх