Разветвленные олигомеры на основе производного гуанидина и содержащее их дезинфицирующее средство

Изобретение относится к синтезу разветвленных олигомеров на основе производных гуанидинов. Предложены разветвленные олигомеры на основе производных гексаметиленгуанидинов формулы (I),

где R представляет

или

n1, n2 и n3 равны 1-3, z равно 0,15-1,10; с молекулярно-массовым распределением Mw/Mn от 5,4 до 9,3 при среднемассовой молекулярной массе Mw 3800-6300 и среднечисловой молекулярной массе Mn 600-1100. Предложено также дезинфицирующее средство, содержащее в качестве активного компонента заявленные олигомеры, а также его применение. Технический результат - предложенные соединения обладают улучшенными и устойчиво воспроизводимыми дезинфицирующими свойствами, пониженной токсичностью и коррозионной активностью. 3 н. и 1 з.п. ф-лы, 1 ил., 5 табл., 8 пр.

 

Область техники

Изобретение относится к области органической химии, а именно к синтезу разветвленных олигомеров на основе производных гексаметиленгуанидинов, которые могут найти применение в качестве дезинфицирующих средств в медицине, ветеринарии, сельском и жилищно-коммунальном хозяйстве, на транспорте, при очистке воды и воздуха и т.д.

Уровень техники

Способы получения продуктов конденсации гуанидина и некоторых его производных с гексаметилендиамином описаны в патенте US 2325586 (НКИ 260-2, опубл. 03.08.1943). В указанном источнике раскрыты основные условия и приемы проведения подобных конденсаций, в частности соотношения реагирующих веществ, близкие к эквимольным, а также температура (60-250°С, предпочтительно 130-200°С), продолжительность реакции (2-20 часов) и способы получения солей получаемых продуктов конденсации. В качестве основной области применения указаны текстильно-вспомогательные вещества, обеспечивающие повышение накрашиваемости различными синтетическими красителями, а также придание готовому текстильному продукту водоотталкивающих свойств. В описании и формуле изобретения подчеркивается, что продукты имеют неразветвленную цепь углеродных атомов.

В патенте RU 2039735 (C07C 279/02, опубл. 20.07.1995) раскрыт способ получения дезинфицирующего средства, включающий стадии: (а) конденсации карбоната гуанидина (КГ) с гексаметилендиамином (ГМДА); и (б) получения соответствующей соли ПГМГ обработкой карбоната органическими и неорганическими кислотами.

На стадии (а) нагревают эквимольные количества КГ и ГМДА при 140°С в течение 10-15 часов, или при 130°С в течение более 25 часов. На стадии (б) к твердому продукту реакции прибавляют эквивалентное количество органической или неорганической кислоты концентрированный раствор кислоты или растирают его с водной суспензией соответствующей малорастворимой кислоты, а полученный продукт сушат в вакууме.

Недостатком способа являются проблемы, сопровождающие получение исходного карбоната. В частности, образование амидов по аминогруппам гуанидина под действием угольной кислоты, а также других кислородсодержащих кислот, при высокой температуре делает КГ малоперспективным для данного применения (см. Patterson P. «Guanidine and Guanidine salts» в монографии Kirk-Othmer Encycl. Chem. Technol., 3-rd Ed., N.-Y., 1978, v.10, p.514-521). Кроме того, получаемые продукты часто не обладают достаточными дезинфицирующими свойствами. Например, минимальная концентрация, задерживающая рост Е. coli, неудовлетворительно высока.

В патенте RU 2052453 (C07C 279/02, опубл. 20.01.1996) описан способ получения дезинфицирующего средства, содержащего гидрохлорид полигексаметиленгуанидина (ПГМГ). Способ включает следующие стадии: (а) предварительное получение гидрохлорида гуанидина (ГГХ), (б) конденсацию с гексаметилендиамином (ГМДА), (в) очистку продукта конденсации от токсичного ГМДА, которая предусматривает его перевод в форму основания ПГМГ действием концентрированного раствора щелочи и многократную промывку водой, и (г) обработку эквивалентным количеством органической или неорганической кислоты в виде концентрированного раствора или растирание его с водной суспензией соответствующей малорастворимой кислоты для получения соответствующей соли ПГМГ.

На стадии (а) циангуанидин (дициандиамид, ДЦДА) нагревают с хлоридом аммония (ХА) при 180-200°С и мольном соотношении ДЦДА:ХА=1:2 в течение 2-3 часов. На стадии (б) в полученную реакционную массу добавляют ГМДА в количестве 1,0-1,5 моль/моль ГГХ и полученную смесь выдерживают 10-15 часов при той же температуре. Недостатками метода является снижение выхода ГГХ на первой стадии за счет образования значительных количеств гидрокси(амино)-симм-триазинов (аммелина и аммелида), а также потери до 20% основания при промывке водой на стадии (в). Кроме того, незначительные отклонения параметров технологического режима (температуры, скорости подачи реагентов, концентрации, интенсивности перемешивания) существенно влияют на выход и свойства получаемого дезинфицирующего средства.

В патенте RU 2170743 (C08G 73/00, A61L 2/16, опубл. 20.07.2001) представлен способ получения дезинфицирующего средства, который осуществляют конденсацией ГМДА с производными гуанидина в расплаве. В соответствии с первым вариантом процесс конденсации проводят в течение 1-2 ч при 180-200°С и мольном отношении ГМДА к производному гуанидина 1:(1,2-2,0). Один из реагентов используют в виде его соли. Дальнейшую очистку продукта проводят сначала растиранием или перекристаллизацией в избытке той неорганической кислоты, соль ГМДА или производного гуанидина которой была использована в реакции конденсации, а затем выделенный продукт промывают этиловым спиртом.

Второй вариант указанного способа предусматривает применение дигидрохлорида гексаметилендигуанидина, полученного в соответствии с первым вариантом, в качестве полупродукта для повторного взаимодействия с ГМДА. Конденсацию проводят в течение 1-2 ч при 180-200°С и мольном отношении ГМДА к производному гуанидина 1:1,2. Полученный продукт обрабатывают основанием или неорганической солью при 20-120°С и соотношении продукт/основание (соль) 1,0:(0,5-4,0), и проводят дальнейшую очистку водой. Получают производные гексаметиленгуанидинов формулы

где А- и В- представляют ОН-, H2РO4-, Na2PO4-, Na2PO4-, (NH4)HPO4-, Сl-; m=1-90, n=0-90, m+n=1-90.

Недостатками полученных продуктов являются их нерастворимость в малополярных практически безводных средах, а также узкий круг грибков и микроорганизмов, на рост которых они могут оказывать замедляющее действие. Кроме того, препараты имеют крайне неудовлетворительные органолептические характеристики, а потому не могут быть использованы, например, в качестве добавки к политерефталатам при производстве посуды для напитков.

В качестве ближайшего аналога настоящего изобретения рассматривается способ получения дезинфицирующих средств конденсацией в расплаве гексаметилендиамина и производного гуанидина, предложенный в патенте RU 2223791 (A61L 2/18, C07C 279/08, C07C 277/08, опубл. 20.02.2004). Отличием ближайшего аналога от первого варианта способа, раскрытого в патенте RU 2170743, является проведение очистки готового продукта в среде жидкой органической кислоты с введением эквивалентного количества соли щелочного металла органической кислоты, дальнейшим удалением неорганической соли и выделением готового продукта, например выпариванием раствора в вакууме. Предпочтительно перед выделением готового продукта в реакционную смесь добавляют эквивалентное количество кислоты, образующей требуемую соль гексаметиленгуанидинового производного.

Второй вариант ближайшего аналога способа в соответствии с настоящим изобретением характеризуется дальнейшей очисткой готового продукта и выделением его в солевой форме. При этом готовый продукт переводят в форму основания обработкой неорганическим основанием и осуществляют очистку его экстракцией органическим растворителем, после чего готовый продукт обрабатывают эквивалентным количеством органической или неорганической кислоты. Кроме того, указанный вариант способа допускает использование дигидрохлорида гексаметилендигуанидина, полученного в соответствии с первым вариантом, в качестве полупродукта для повторного взаимодействия с ГМДА.

Таким образом, соединения известного уровня техники имеют определенные недостатки, а именно ограниченную растворимость в малополярных средах, например в смесях, содержащих неводные растворители, а также достаточно узкий спектр антибактериальной активности.

Целью данного изобретения является разработка способа получения производных гексаметиленгуанидинов с улучшенными и устойчиво воспроизводимыми дезинфицирующими свойствами, пониженной токсичностью и коррозионной активностью, позволяющими расширить область его применения, не ограничивая ее водными растворами, например для потенциального применения в промышленности лакокрасочных и полимерных материалов, в пищевой промышленности, ветеринарии и фармации.

Описание изобретения

Все известные авторам настоящего изобретения аналогичные продукты характеризуются отсутствием углеводородных радикалов при амидном атому азота (>C=NH), т.е. неразветвленной олигомерной цепью. Кроме того, описания известных изобретений не дают оснований предполагать, что разветвленные структуры могут быть получены в условиях, раскрытых в соответствующих публикациях. Также указанный уровень техники не содержит указаний к тому, что подобные разветвленные соединения могут обладать улучшенными токсикологическими, коррозионными и/или биологическими свойствами.

В результате обширных исследований авторы настоящего изобретения установили, что в условиях проведения синтеза производных гексаметиленгуанидинов, представленных в настоящем описании и проиллюстрированных конкретными примерами, возможно получение разветвленных структур, обладающих неожиданными свойствами. Это позволяет преодолеть некоторые недостатки известного уровня техники. Соответственно, в первом воплощении настоящее изобретение обеспечивает разветвленные олигомеры гексаметилендиамина и гуанидина, полезные в качестве активных компонентов дезинфицирующих средств.

В следующем воплощении изобретение обеспечивает дезинфицирующее средство, содержащее разветвленные олигомеры гексаметилендиамина и гуанидина, растворитель и совместимые добавки.

Еще в одном воплощении изобретение относится к применению указанного дезинфицирующего средства для удаления бактериальных, вирусных и грибковых загрязнений, а также загрязнений спорами, с различных объектов при кратковременном воздействии.

Авторы неожиданно обнаружили, что при олигомеризации гидрохлорида гуанидина (ГГ) и гексаметилендиамина (ГМДА), взятых в мольных соотношениях ГМДА/ГГ от 1,00:1,0 до 1,00:1,20, в интервале температур реакции от 180 до 230°С, протекающей в течение от 3 до 12 часов, из реакционной массы можно выделить достаточные количества продуктов с характерными физико-химическими свойствами.

В частности, было установлено, что в спектре 13С-ЯМР соединений настоящего изобретения (ОГМГ), являющихся продуктами олигомеризации гидрохлорида гуанидина (ГГ) и гексаметилендиамина (ГМДА), присутствует, по меньшей мере, один характеристичный сигнал ядер атомов углерода, связанных с замещенным атомом азота имидной группы (>C=N-R), где R является разветвлением основной цепи. На основании полученных результатов строение соединений ОГМГ в форме соответствующих оснований может быть охарактеризовано более конкретно следующей структурной формулой (I):

где R представляет или a n1, n2 и n3 равны 1-3, a z равно 0,15-1,10.

Для отнесения сигналов в спектре 13С-ЯМР и доказательства строения полученных соединений как разветвленных олигомеров авторы синтезировали, выделили, очистили и охарактеризовали мономерные соединения родственной структуры: дигидрохлорид гексаметилендигуанидина (ГМДГ) и дигидрохлорид тетраэтилгексаметилендигуанидина (ТЭГМДГ), формулы которых представлены ниже

В спектре ГМДГ присутствует синглет при 158,92 м.д., соответствующий атому углерода концевого гуанидинового фрагмента, тогда как в спектре ТЭГМДГ химический сдвиг аналогичного сигнала находится при 156,34 м.д., что связано с замещением имидного атома азота этильной группой.

На рис.1 сопоставлены спектры 13С-ЯМР гидрохлорида ОГМГ (нижний спектр) с относительно небольшой молекулярной массой и модельных соединений (ГМДГ и ТЭГМДГ). Специалисту в данной области очевидно, что структура соединений настоящего изобретения включает концевые замещенные и незамещенные гуанидиновые группы, однако сигнал с наибольшей интегральной интенсивностью соответствует атому углерода тризамещенного (разветвленного) гуанидинового фрагмента.

Полное отнесение химических сдвигов атомов углерода относительно DSS, сделанное на основании экспериментальных данных и адекватных квантово-химических расчетов, приведено в таблице 1.

Таблица 1
Атом углерода* Хим. сдвиг, м.д. Атом углерода* Хим. сдвиг, м.д.
I 27,79 III 43,41
II' 28,83 IV'' 156,47
II 30,24 IV 157,90
III' 41,74 IV' 158,92
* обозначения атомов даны в формуле (I)

Из интегральных интенсивностей сигналов «неразветвленных» и «разветвленных» звеньев, концевых фрагментов гуанидина и гексаметилендиамина, зная их молекулярные массы (141, 182, 100 и 58 соответственно), можно рассчитать среднечисловую молекулярную массу (Мn) ОГМГ

,

где мольные количества концевых фрагментов гуанидина

и гексаметилендиамина выражаются через интегральные интенсивности сигналов SII, SIII, SIV, SII', SIII', SIV', и SIV” соответствующих атомов углерода следующим образом:

;

где и

Исследовав характеристическую вязкость и другие реологические свойства растворов соединений настоящего изобретения в 0,3 М NaCl при 298 К, авторы обосновали возможность описания седиментационного равновесия моделью Филпота-Свенссона, что позволяет вычислять среднемассовые молекулярные массы по данным ультрацентрифугирования следующим образом:

,

где

Z - высота градиентной кривой, см;

Сх - концентрация раствора в диапазоне 0,8-2,0 г/дл;

V=0,786 см3/г - удельный парциальный объем олигомера в растворе;

ρ0=1,0096 г/см3 - плотность растворителя;

ω=2πn/60 - угловая скорость вращения ротора.

Применение приведенных выше формул для конкретных воплощений настоящего изобретения проиллюстрировано примерами, данными в описании.

Таким образом, авторы доказательно утверждают, что гидрохлориды ОГМГ в соответствии с настоящим изобретением представляют собой разветвленные структуры со средним количеством разветвлений от 0,15 до 1,10 на молекулу и характеризуются достаточно широким молекулярно-массовым распределением (Mw/Mn=5,4…9,3).

В условиях синтеза соединения в соответствии с настоящим изобретением образуются в виде их гидрохлоридных солей. Специалисту в данной области должны быть очевидны способы превращения гидрохлоридов ОГМГ в другие соли, а также необходимые для этого условия (соотношения реагентов, растворители и т.д.).

В частности, действием гидрохлоридов ОГМГ на натриевые соли более слабых органических кислот, таких как уксусная, масляная, молочная, янтарная, глутаминовая и тому подобные, в среде уксусной или пропионовой кислоты можно получить соответствующие соли ОГМГ в соответствии с настоящим изобретением.

Альтернативно, гидрохлориды ОГМГ в соответствии с настоящим изобретением можно перевести в форму свободного основания действием избытка концентрированного водного раствора щелочи в присутствии изопропилового спирта. Из выделенного основания ОГМГ можно получить соли таких кислот, как, например, бензойная, п-толуолсульфоновая, фосфорная и тому подобных, действием эквивалентного количества соответствующей кислоты в среде спирта, такого как этиловый или бензиловый спирт.

Промежуточное получение оснований ОГМГ также может быть использовано для очистки продуктов олигомеризации от содержащихся в них токсичных и коррозионно-активных ГМДА и ГГ. Для этого в соответствии с настоящим изобретением к раствору гидрохлорида ОГМГ добавляют 50% мольный избыток концентрированного раствора щелочи, например NaOH, до pH порядка 12 и отбирают верхний слой реакционной массы в виде вязкой мутной жидкости белого цвета. Полученный продукт содержит суспензию основания ОГМГ и до 1 мас.% ГМДА.

Альтернативно, получение основания можно проводить в присутствии спирта, такого как этанол или изопропанол, взятого в количестве 0,5-1,0 объема от общего объема реакционной массы, состоящей из равных объемов приблизительно 50% водных растворов олигомера и щелочи. В этом случае остаточное содержание ГМДА можно снизить до 0,02-0,1 мас.% в зависимости от времени и температуры проведения процесса, а также соотношения реагентов и спирта.

Проведя исследования токсичности и коррозионной активности предлагаемых соединений, авторы установили, что разветвление структуры способствует статистически значимому снижению LD50/LDC50 на 10-15%, а коррозионной активности - на 10-50% по сравнению с известными соединениями.

Также было обнаружено, что ОГМГ в соответствии с настоящим изобретением проявляют более высокую бактерицидную, противовирусную и противогрибковую активность в качестве активных компонентов дезинфицирующих средств по сравнению с воплощениями ближайшего аналога, раскрытыми в патенте РФ 2223791. Сравнительные исследования были проведены для 1% водных растворов. Однако авторы установили, что соединения настоящего изобретения в достаточной мере растворимы в смесях воды со спиртами (этанол, бутанол, пропанолы), в спиртах, сложных эфирах (этилацетат), амидах (формамид) и также обладают в виде таких растворов заявленной дезинфицирующей активностью.

Следующим воплощением настоящего изобретения является дезинфицирующее средство. В соответствии с настоящим изобретением для его приготовления можно использовать солевую форму ОГМГ непосредственно или в виде заранее приготовленного концентрированного раствора. В зависимости от солевой формы ОГМГ такой раствор может содержать в качестве растворителя воду или водно-органические растворители, например включающие спирты, гликоли и другие подходящие соединения, смешивающиеся с водой, в качестве органического компонента.

При необходимости в концентрированный раствор могут быть введены совместимые добавки, обеспечивающие дополнительные преимущества, например снижающие температуру замерзания, вязкость и/или поверхностное натяжение, солюбилизирующие другие загрязнения (жиры, масла и т.д.), красители и тому подобное. Термин «совместимые добавки» обозначает устойчивые химические соединения, не вступающие в нежелательные реакции с солями ОГМГ настоящего изобретения или иным образом не ухудшающие полезных свойств дезинфицирующего средства. Например, гликоли могут быть введены в состав концентрированного раствора для снижения температуры замерзания с целью предохранения раствора от воздействия пониженных температур при транспортировке и хранении. Красители, в молекулах которых отсутствуют отрицательно заряженные группы, например метиленовый голубой или сафранин, можно применять для окрашивания концентрированных растворов с целью их маркировки.

Для гидрохлорида ОГМГ в соответствии с настоящим изобретением предпочтительно готовить концентрированные водные растворы, содержащие от 10 до 40% (мас./об.) активного компонента. Наиболее предпочтительны растворы, содержащие приблизительно 25% (мас./об.) гидрохлорида ОГМГ.

В случае солей с малой растворимостью в воде для приготовления растворов можно применять органические растворители, такие как этилацетат, хлороформ и др. Выбор растворителя зависит от цели дальнейшего использования раствора и находится в компетенции среднего специалиста в соответствующей области техники. Концентрированные растворы обладают достаточно длительным сроком годности при хранении в герметичной упаковке, который предпочтительно составляет 3 года.

Дезинфицирующее средство предпочтительно применяют в виде, по существу, водных растворов, содержащих от 0,1 до 5% (мас./об.) гидрохлорида ОГМГ. Выбор способа применения определяется видом и размерами загрязненного объекта, а также предполагаемым или установленным загрязнением, подлежащим удалению, и находится в компетенции среднего специалиста в соответствующей области. Например, для обработки больших поверхностей (стены, двери) с загрязнениями умеренно-патогенными бактериями указанные поверхности протирают 0,1-0,5% раствором и оставляют на 15-60 минут. При загрязнениях высокопатогенными бактериями, вирусами (ВИЧ, гепатит С и др.), а также при обработке полов в инфекционных отделениях больниц, или при загрязнении грибками концентрацию следует увеличить в 5-10 раз, а время воздействия увеличить до 60-300 минут. Небольшие объекты обрабатывают, погружая в 1-2% раствор (посуда) или замачивают (белье, инструменты, предметы ухода за больными) в 2-4% растворе в течение 30-60 минут. Предпочтительно дезинфицирующее средство сохраняет полезную активность в течение 3 месяцев.

Далее настоящее изобретение будет проиллюстрировано примерами синтеза и исследования конкретных предлагаемых соединений.

Примеры 1-6. Получение ОГМГ в соответствии с настоящим изобретением.

К навеске гидрохлорида гуанидина (ГГ) массой 9,55-11,46 г (0.1-0.12 моль), зависящей от мольного соотношения ГМДА/ГГ, при 160°С и интенсивном перемешивании в течение 30 минут добавляют небольшими порциями 11,62 г (0.1 моль) гексаметилендиамина (ГМДА). После окончания прибавления температуру быстро повышают до температуры реакции (ТР) и продолжают перемешивание смеси при данной температуре в течение времени проведения реакции (ВР). Состав исходной смеси реагентов и условия проведения реакции приведены в Таблице 2.

Таблица 2
Пример Мольное соотношение ГМДА/ГГ ТР, °С ВР, ч
1 1,00:1,00 180 5
2 1,00:1,05 230 3
3 1,00:1,10 180 5
4 1,00:1,10 230 10
5 1,00:1,15 230 10
6 1,00:1,20 200 12

Пример 7. Определение физико-химических характеристик разветвленных олигомеров гексаметилендиамина и гуанидина.

А) Определение среднечисловой молекулярной массы (Мn) ОГМГ по интегральным интенсивностным сигналам в спектре 13С ЯМР.

Спектры 13С ЯМР регистрировали на спектрометре Bruker AV-600 с частотой на ядрах углерода 150 МГц при температуре 303 К в режиме полного широкополосного подавления сигналов протонов и отсутствия ядерного эффекта Оверхаузера. Задержка между импульсами по правилу 5T1 для исключения влияния релаксационных эффектов составляла 60 секунд. Количество сканирований - 200. В качестве внутреннего стандарта использовали DSS.

В ампулу для ЯМР диаметром 5 мм последовательно переносили 200 мкл D2O, 300 мкл 50% раствора гидрохлорида ОГМГ в Н2O и 100 мкл 15% водного раствора соляной кислоты и тщательно перемешивали. В случае появления осадка раствор нагревали до 70°С до его полного растворения. Значения Мn вычисляют на основе интегральных интенсивностей сигналов SII, SIII, SIV, SII', SIII', SIV' и SIV”.

Б) Определение среднемассовой молекулярной массы (Мw) ОГМГ по данным ультрацентрифугирования.

Определение среднемассовых молекулярных масс проводили по результатам измерения удельной и характеристической вязкостей на аналитической ультрацентрифуге фирмы MOM (Венгрия) в 0,3 М NaCl в качестве растворителя, при температуре 298 К и частоте вращения ротора 50000 об/мин (200000 g) для растворов олигомеров с различными концентрациями.

Полученные физико-химические характеристики приведены в таблице 3.

Таблица 3
Параметр Пример
1 2 3 4 5 6
SII 2,02 2,00 1,98 1,97 2,20 2,01
SIII 2,00 2,00 2,00 2,00 2,00 2,00
SIV 0,78 0,80 0,84 0,70 0,84 0,82
SII' 0,12 0,19 0,14 0,08 0,15 0,14
SIII' 0,09 0,12 0,18 0,16 0,13 0,17
SIV' 0,23 0,21 0,31 0,35 0,29 0,42
SIV'' 0,048 0,128 0,048 0,114 0,128 0,048
[гуан]конц 1,70 1,96 1,39 1,74 1,85 1,53
[ГМДА]конц 0,67 1,12 0,81 0,80 0,83 0,62
6,00 6,73 3,49 3,30 4,43 2,65
z 0,37 1,08 0,20 0,54 0,68 0,16
Mn 1122 1405 715 783 981 592
Mw Н/О Н/О 3800 4600 6300 5500
Mw/Mn - - 5,38 5,87 6,37 9,29
Н/О - не определено с достаточной правильностью.

Пример 8. Исследование токсичности и коррозионной активности ОГМГ.

Токсичность определяли на мышах по ГОСТ 12.1.007-76 при внутрижелудочном (LD50) и накожном (LDC50) введении.

Коррозионную активность оценивали коэффициентом массовой коррозии (Kотн) стали 30ХГСА в 1% растворах ОГМГ и NaCl при 20°С в течение 2 часов (коэффициент массовой коррозии в присутствии NaCl принят равным 1,00). Полученные результаты представлены в таблице 4.

Таблица 4
Пример (LD50), мг/кг (LDC50), мг/кг Kотн
1 4100 16800 0,05
2 3800 15300 0,15
3 3900 16500 0,05
4 4200 17600 0,01
5 3500 13400 0,10
6 3900 16500 0,10
2* 1000 10500 0,55
8* 3100 15000 0,10

Примеры 2* и 8* относятся к соответствующим соединениям ближайшего аналога (Патент РФ 2223791).

Пример 9. Исследование дезинфицирующих свойств ОГМГ.

Дезинфицирующие свойства ОГМГ в отношении бактериальных и вирусных загрязнителей исследовали на модели посуды (чашки Петри), для чего комплект посуды из 4 чашек Петри полностью погружали в 1 литр 1% дезинфицирующего раствора, приготовленного из 40 мл 25% концентрированного раствора. После окончания дезинфекции посуду сразу же погружали последовательно в две емкости с теплой водой на 5 минут в каждую.

Дезинфицирующие свойства ОГМГ в отношении грибковых и споровых загрязнителей исследовали на модели поверхности пола в помещении (кусок линолеума 20×20 см), которую протирали ветошью, увлажненной раствором средства из расчета 100 мл/м2 обрабатываемой поверхности. Эффективность оценивали через 2 минуты по числу выживших организмов.

В Таблице 5 представлены данные испытания 1% водных растворов ОГМГ в соответствии с настоящим изобретением в качестве дезинфицирующих средств на объектах с бактериальным (E. coil), вирусным (колифаг MS-2) и грибковым (Penicillum chrysogenum) загрязнениями, а также с загрязнением спорами (Bacillus cereus) при времени экспозиции 2 минуты.

Таблица 5
Пример % инактивации загрязнения
E. coil колифаг MS-2 Penicillum chrysogenum Bacillus cereus
1 83,5 93,5 41,7 40,8
2 82,7 100 97,4 81,1
3 80 91 34,3 29,4
4 97,8 100 100 98,5
5 88,1 100 95,8 87,2
6 76,5 89,3 37,2 26,1
2* 2,5 0 20 7,0
8* 70,7 100 95,4 78,7

Примеры 2* и 8* относятся к соответствующим соединениям ближайшего аналога (Патент РФ 2223791).

1. Разветвленные олигомеры гексаметилендиамина и гуанидина формулы (I)

где R представляет или
а n1, n2 и n3 равны 1-3, a z равно 0,15-1,10 с молекулярно-массовым распределением Mw/Mn от 5,4 до 9,3 при среднемассовой молекулярной массе Mw в интервале от приблизительно 3800 до 6300 и среднечисловой молекулярной массе Mn в интервале от приблизительно 600 до 1100, в виде соли.

2. Разветвленные олигомеры по п.1, в которых z равно 0,54-0,68 с молекулярно-массовым распределением Mw/Mn от 5,87 до 6,37 при среднемассовой молекулярной массе Mw в интервале от приблизительно 4600 до 6300 и среднечисловой молекулярной массе Mn в интервале от приблизительно 780 до 980.

3. Дезинфицирующее средство, содержащее в качестве активного компонента 0,1-25% (мас./об.) разветвленного олигомера гексаметилендиамина и гуанидина формулы (I) в виде гидрохлорида, а также воду в качестве растворителя.

4. Применение дезинфицирующего средства по п.3 для удаления бактериальных, вирусных и грибковых загрязнений, а также загрязнений спорами с различных объектов при действии указанным средством в течение 2-300 мин.



 

Похожие патенты:

Изобретение относится к способу получения ароматических полибензимидазолов, который заключается в том, что в ионных жидкостях вида 1-Bu-3-MeImCl/AlCl3, 1-Et-3-MeImCl/AlCl3 , 1-Bu-2,3-Me2ImCl/AlCl3, 1-Bu-3-MeImBr, 1-Bu-3-MeImBF4 образуются промежуточные полиамидины при взаимодействии ароматических динитрилов с диаминами при температуре 160-190°С в течение 15-17 часов, которые в дальнейшем подвергаются окислительной дегидроциклизации при действии гипохлорита натрия в присутствии основания при 100°С в течение 4-8 часов.
Изобретение относится к области получения жидкого термореактивного олигомера на основе модифицированного полисульфидным каучуком 2,2-бис(4-цианатофенил)пропана, используемого в качестве заливочного или пропиточного компаунда, а также полимерной основы связующего для конструкционных стеклопластиков электротехнического назначения.

Изобретение относится к композициям на основе полиимидных смол, применяемым для получения покрытий. .

Изобретение относится к новым высокомолекулярным соединениям, обладающим биологической активностью. .
Изобретение относится к области высокопрочных композиционных материалов на основе волокнистых наполнителей и полимерных связующих, которые могут быть использованы в авиационной промышленности, в машиностроении и других областях техники.

Изобретение относится к способу получения тетразолсодержащих сополимеров, обладающих физиологической и каталитической активностью, а также повышенной энергоемкостью.
Изобретение относится к связующему для нагревостойких профильных стеклопластиков электротехнического назначения. .

Изобретение относится к химии и физикохимии полимеров, а именно к впервые полученным сополимерам N-винилкарбазола и N-винилкапролактама. .

Изобретение относится к способу синтеза полифторсодержащих бициклических спиртов на основе 7-оксанорборненов в узловом положении, осуществляющийся в несколько этапов: синтез 2-фурфурилацетата путем ацилирования фурфурилового спирта уксусным ангидридом в присутствии безводного ацетата натрия; получение (5,5,6-трифтор-6-(трифторметил)-7-окса-бицикло)[2.2.1]гепт-2ен-1ил)метил ацетата реакцией [4+2]-циклоприсоединения 2-фурфурилацетата с гексафторпропиленом при 170°C в течение 8 часов; омыление (5,5,6-трифтор-6-(трифторметил)-7-окса-бицикло)[2.2.1]гепт-2ен-1ил)метил ацетата водно-спиртовым раствором щелочи до (5,5,6-трифтор-6-(трифторметил)-7-окса-бицикло)[2.2.1]гепт-2ен-1ил)метанола формулы C8H6F6O2 в течение часа.

Изобретение относится к способу получения карбамида при повышенных температуре и давлении в установке, содержащей секцию высокого давления, которая включает реактор, стриппер, конденсатор и скруббер.

Изобретение относится к способу получения 1-(3,4-дихлорбензил)-5-октилбигуанида, представленного формулой (1), или его соли, заключающемуся во взаимодействии 1-циано-3-октилгуанидина или его соли с 3,4-дихлорбензиламином или его солью в сложноэфирном органическом растворителе.

Изобретение относится к устройствам и способам для получения карбамида и может быть использовано в химической промышленности и промышленности по производству удобрений.

Изобретение относится к способу получения высококонцентрированного метилаля из формальдегида и метанола реакционно-ректификационным методом, включающему предварительное смешение водного раствора формальдегида и метанола, подачу полученной смеси в предреакционную зону, последующую подачу смеси непрореагировавших исходных реагентов, образовавшегося метилаля и воды в ректификационную колонну, имеющую реакционно-ректификационную зону, расположенную выше куба ректификационной колонны, подачу экстрагента в ректификационную зону колонны, расположенную выше реакционно-ректификационной зоны, конденсацию продукта, содержащего более 98 мас.% метилаля, отбираемого сверху колонны, очистку метилаля от содержащихся в нем примесей, характеризующемуся тем, что на предварительное смешение подают метанол в количестве от 95 до 50% от необходимого для осуществления способа, а оставшуюся часть метанола, в количестве от 5 до 50% от необходимого для осуществления способа, подают в ректификационную колонну ниже реакционно-ректификационной зоны и очистку метилаля проводят азеотропной ректификацией с изопентаном, подаваемым в количестве от 15 до 50% в расчете на количество очищаемого метилаля, с выделением в качестве кубового продукта целевого метилаля, а в качестве верхнего продукта смеси изопентана преимущественно с метилалем, метанолом и водой с последующей конденсацией и расслаиванием верхнего продукта на углеводородный и водный слои, возвратом части углеводородного слоя в колонну азеотропной ректификации в качестве флегмы, а оставшейся части углеводородного слоя в питание этой колонны и с возвратом водного слоя в ректификационную колонну ниже реакционно-ректификационной зоны.

Изобретение относится к способу получения сложных эфиров (мет)акриловой кислоты (F) на основе спиртов, имеющих, по меньшей мере, одну углерод-углеродную тройную связь, характеризующемуся тем, что, по меньшей мере, один спирт, имеющий, по меньшей мере, одну углерод-углеродную тройную связь, формулы (1) где R1 означает водород, алкил, имеющий от 1 до 18 атомов углерода; алкил, имеющий от 2 до 18 атомов углерода, арил, имеющий от 6 до 12 атомов углерода, циклоалкил, имеющий от 5 до 12 атомов углерода, прерванные, при необходимости, одним или несколькими атомами кислорода и/или серы и/или одним или несколькими замещенными или незамещенными иминогруппами, или пятичленный-шестичленный гетероцикл, имеющий атомы кислорода, азота и/или серы, при этом названные остатки могут быть замещены соответственно арилом, алкилом, арилокси, алкилокси, гетероатомами и/или гетероциклами, и R2 означает алкилен, имеющий от 1 до 20 атомов углерода, циклоалкилен, имеющий от 5 до 12 атомов углерода, арилен, имеющий от 6 до 12 атомов углерода, или алкилен, имеющий от 2 до 20 атомов углерода, прерванный одним или несколькими атомами кислорода и/или серы, и/или одной или несколькими замещенными или незамещенными иминогруппами, и/или одной или несколькими группами циклоалкила, -(СО)-, -O(CO)O-, -(NH)(CO)O-, -O(CO)(NH)-, -O(CO)- или -(CO)О-, при этом названные остатки могут быть замещены соответственно арилом, алкилом, арилокси, алкилокси, гетероатомами и/или гетероциклами, n означает целое число от 0 до 3, предпочтительно от 0 до 2 и особенно предпочтительно от 1 до 2 и Xi для каждого i=0 до n независимо друг от друга можно выбрать из группы -CH 2-СН2-O-, -CH2-CH(CH3)-O-, -CH(CH3)-CH2-O-, -CH2 -C(CH3)2-O-, -C(CH3)2 -CH2-O-, -CH2-CHVin-O-, -CHVin-CH2 -O-,-CH2-CHPh-O- и -CHPh-CH2 -O-, предпочтительно из группы -CH2-CH2 -O-,-CH2-CH(CH3)-O- и -CH(CH3)-CH2-O-, и особенно предпочтительно -CH2-CH2-O-, где Ph означает фенил и Vin означает винил, причем гидроксигруппы спирта являются первичными или вторичными, этерифицируют в присутствии, по меньшей мере, одного фермента (Е) с (мет)акриловой кислотой или переэтерифицируют с, по меньшей мере, одним сложным эфиром (мет)акриловой кислоты (D).
Изобретение относится к области фармацевтической химии, конкретно к способу получения амидов креатина, обладающих нейропротекторным действием, в виде солей. .
Изобретение относится к области фармацевтической химии, конкретно к способу получения амидов креатина, обладающих нейропротекторным действием, в виде солей. .

Изобретение относится к высокомолекулярным соединениям, в частности к ароматическим олигоэфирам, которые могут быть использованы в качестве олигомеров для получения поликонденсационных полимеров.

Изобретение относится к области медицины, в частности получению гелей на основе L-цистеина и нитрата серебра. .
Наверх