Способ получения асмола


 


Владельцы патента RU 2443751:

Общество с ограниченной ответственностью Научно-исследовательский центр "Поиск" (ООО НИЦ "Поиск") (RU)

Изобретение может быть использовано для защиты магистральных трубопроводов от почвенной и электрохимической коррозии. Асмол получают путем взаимодействия битума или асфальта с абсорбентом, получаемым в производстве бутадиена, изопрена, изобутилена, в присутствии серной кислоты, при следующем соотношении компонентов: 75-85 мас.% битума или асфальта деасфальтизации пропаном; 8-22 мас.% абсорбента и серная кислота - остальное. На первой стадии битум или асфальт перемешивают с абсорбентом при температуре 100-115°С, после чего в реакционную смесь прикапывают серную кислоту в течение 5-6 часов до достижения температуры смеси 120-130°С. На второй стадии полученную смесь перемешивают в течение 2-2,5 часов, затем повышают температуру смеси до 135-140°С, после чего перемешивают ее в течение 4-5 часов. На третьей стадии температуру смеси повышают до 145-155°С и при достижении этой температуры смесь перемешивают в течение 4-6 часов с образованием целевого продукта. Изобретение позволяет повысить технологичность способа, а также улучшить эксплуатационные свойства асмола. 1 табл.

 

Изобретение относится к области защиты магистральных трубопроводов от почвенной и электрохимической коррозии, в частности к способу получения антикоррозионного материала, сырьевой базой которого являются побочные продукты нефтехимических производств.

Известен способ получения асмола - асфальтосмолистого олигомера, используемого в качестве антикоррозионного материала, в одну стадию путем взаимодействия асфальта пропановой деасфальтизации гудрона с отходами производства изопрена - кубовыми остатками стадии регенерации диметилформамида, взятыми в количестве 10-45 мас.% и 5-15 мас.% соответственно, в присутствии серной кислоты при температуре 120-130°C в течение 120-180 мин (Авт. св. №1696454, кл. C10C 3/02, опубл. 1991 г.).

Недостаток данного способа - низкие эксплуатационные свойства получаемого асмола при использовании для защиты магистральных трубопроводов.

Наиболее близким к заявляемому объекту является способ получения асмола в три стадии путем взаимодействия битума или асфальта пропановой деасфальтизации гудрона с отходами производства изопрена - кубовыми остатками стадии регенерации диметилформамида в присутствии серной кислоты при следующем соотношении компонентов, мас.%:

асфальт 75-85
тяжелая смола (кубовый остаток
регенерации диметилформамида) 10-15
серная кислота остальное

На первой стадии процесс ведут при температуре 120-125°C в течение 210 мин, на второй стадии - при температуре 150°C в течение 240 мин, на третьей стадии - при температуре 160-180°C в течение 240 мин (Н.М.Черкасов, И.Ф.Гладких, К.М.Гумеров, И.У.Субаев. Асмол и новые изоляционные материалы для подземных трубопроводов. - М: ООО «Недра-Бизнес-центр», 2005, стр.108).

Недостаток этого способа получения асмола - нетехнологичность процесса из-за того, что кубовый остаток стадии регенерации диметилформамида представляет собой вязкий продукт, вследствие чего требует подогрева при загрузке в реактор для осуществления способа. Однако при высокой температуре и длительном прогреве кубового остатка происходит деструкция изопрена и его олигомеров, что влечет за собой уменьшение их концентрации и получение целевого продукта с низкой молекулярной массой и ухудшенными свойствами. Кроме того, хотя получаемый этим способом асмол имеет высокие эксплуатационные свойства, все же имеются резервы улучшения его качества.

Изобретение направлено на повышение технологичности способа путем снижения температуры проведения реакции при получении целевого продукта и исключения требующего подогрева компонента с одновременным улучшением эксплуатационных свойств асмола.

Это достигается тем, что асмол получают в три стадии путем взаимодействия битума или асфальта пропановой деасфальтизации гудрона с абсорбентом, получаемым в производстве бутадиена, изопрена, изобутилена, в присутствии серной кислоты, при следующем соотношении компонентов, мас.%:

битум или асфальт

деасфальтизации пропаном 75-85
абсорбент 8-22
серная кислота остальное

На первой стадии осуществления способа битум или асфальт перемешивают с абсорбентом при температуре 100-115°C, после чего в реакционную смесь прикапывают серную кислоту в течение 5-6 часов до достижения температуры смеси 120-130°C, на второй стадии - полученную смесь перемешивают в течение 2-2,5 часов, затем повышают температуру смеси до 135-140°C, после чего перемешивают ее в течение 4-5 часов, на третьей стадии - температуру смеси повышают до 145-155°C и при достижении этой температуры смесь перемешивают в течение 4-6 часов с образованием целевого продукта.

Абсорбент, образующийся в производстве мономеров для синтетического каучука, в частности бутадиена, изобутилена, изопрена, представляет собой жидкость из смеси углеводородов, является товарным продуктом и выпускается по ТУ 38.103349-85 и по ТУ 2411-139-05766801-2007.

Предлагаемый способ получения асмола осуществляют следующим образом.

1 стадия: В реактор, снабженный перемешивающим устройством и рубашкой для обогрева, закачивают расчетное количество разогретого до 100±10°C битума или асфальта пропановой деасфальтизации гудрона. Затем в реактор подают абсорбент без предварительного подогрева, так как он представляет собой жидкий невязкий продукт. Компоненты тщательно перемешивают при температуре 100-115°C. Затем в реакционную смесь подают прикапыванием серную кислоту до достижения температуры смеси 120-130°C. При этом в реакционной смеси происходят процессы образования сульфокислот и сульфоновых полиароматических соединений с выделением тепла. Прикапывание серной кислоты и перемешивание реакционной смеси длится в зависимости от количества кислоты до 5-6 часов.

2 стадия: Смесь перемешивают при температуре 120-130°C в течение 2-2,5 часов. Затем температуру реакционной смеси повышают до 135-140°C и перемешивают в течение 4-5 часов. При этом в реакционной смеси происходят процессы олигомеризации и поликонденсации продукта.

3 стадия: Повышают температуру реакционной смеси в реакторе до 145-155°C и перемешивают полученный продукт в течение 4-6 часов для стабилизации его свойств.

После завершения третьей стадии готовый продукт (асмол) выгружают.

Способ получения асмола иллюстрируется следующими примерами.

Пример 1.

1 стадия: В нагретый реактор подают расчетное количество битума, нагретого до температуры 100°C, и абсорбент марки А-1 по ТУ 38.103349-85, полученный в процессе производства бутадиена на установке газоразделения, без предварительного нагрева. Смесь перемешивают при температуре 110°C. Затем в реактор подают прикапыванием серную кислоту из расчета 30 кг/час на 1 т реакционной смеси до достижения температуры реакционной смеси 125°C в течение 6 часов. Соотношение компонентов реакционной смеси составляет, мас.%:

битум или асфальт пропановой
деасфальтизации гудрона 75
абсорбент 18
серная кислота 7

2 стадия: реакционную смесь перемешивают в течение 2 часов при температуре 125°C. Затем температуру реакционной смеси повышают до 140°C и перемешивают ее в течение 5 часов.

3 стадия: Температуру реакционной смеси повышают до 150°C и продолжают ее перемешивание в течение 4 часов.

Примеры 2-3. Аналогично примеру 1 был получен асмол при другом соотношении компонентов реакционной смеси и при других температурах ведения процесса.

Пример 4. Для сравнения был получен асмол по способу-прототипу:

Компоненты асмола, их соотношение и режим получения асмола по примерам 1 -4 сведены в таблицу.

Как видно из таблицы, использование предлагаемого способа позволит по сравнению с прототипом улучшить эксплуатационные свойства получаемого асмола: снизить водопоглощение, что приведет к уменьшению проницаемости мастики и увеличению барьерных свойств покрытия, уменьшить катодное отслаивание, что обеспечит стойкость покрытия к току катодной поляризации и в целом повысит защитные свойства покрытия, снизить температуру хрупкости до минус 37°C, а также повысить показатель пенетрации, что сделает мастику более пластичной и позволит проводить изоляционные работы при более низких температурах окружающего воздуха.

Кроме того, так как абсорбент по ТУ 38.103349-85 представляет собой жидкость, то это дает возможность исключить его подогрев при загрузке в реактор, в то время как используемый в способе по прототипу кубовый остаток является вязким продуктом, требующим подогрева для обеспечения текучести при загрузке в реактор для осуществления способа. Проведение реакции для получения асмола при более низких температурах позволит снизить энергозатраты и трудоемкость процесса, исключить деструкцию мономеров для синтетического каучука (бутадиена, изопрена, изобутилена) и обеспечить стабильность получаемого продукта.

Таблица
Сравнительные данные по получению асмола предлагаемым способом и способом по прототипу
Показатели Примеры по предлагаемому способу Пример 4 по прототипу
пример 1 пример 2 пример 3
Содержание компонентов, мас.%:
Битум 75 80 - 83
АПД - - 80 -
Абсорбент 18 17 15 -
Смола КОРД - - - 11
Серная кислота 7 3 5 6
Режим процесса:
1 стадия:
температура, °C 110 105 110 90
температура, °C 125 120 120 125
время прикапывания серной кислоты, ч 6 4 5 3
2 стадия:
температура, °C 125 120 120 150
время перемешивания смеси, ч 2 2 2 4
температура, °C 140 135 135
время перемешивания смеси, ч 5 4 4
3 стадия:
температура, °C 150 145 145 160
время перемешивания смеси, ч 5 4 4 4
Свойства полученного асмола:
Температура размягчения по КиШ, °C 115 91 116 101
Адгезия на сдвиг, МПа (кгс/см2) 0,36 0,28 0,34 0,36
Водопоглощение при 20°C за 24 часа, % 0,057 0,083 0,064 0,21
Стойкость покрытия к катодному отслаиванию, см2 2,4 2,6 2,2 2,9
Глубина проникания иглы, 0,1 доли мм 30 41 32 23
Температура хрупкости по Фраасу, °C минус 35 минус 37 минус 35 минус 30
Кислотность, pH 6,7 7,0 7,0 6,4

Способ получения асмола в три стадии путем взаимодействия битума или асфальта пропановой деасфальтизации гудрона с абсорбентом, получаемым в производстве бутадиена, изопрена, изобутилена, в присутствии серной кислоты при следующем соотношении компонентов, мас.%:

битум или асфальт деасфальтизации пропаном 75-85
абсорбент 8-22
серная кислота остальное,

на первой стадии способа битум или асфальт перемешивают с абсорбентом при температуре 100-115°С, после чего в реакционную смесь при этой температуре прикалывают серную кислоту в течение 5-6 ч до достижения температуры смеси 120-130°С, на второй стадии полученную смесь перемешивают в течение 2-2,5 ч, затем повышают температуру смеси до 135-140°С, после чего перемешивают ее в течение 4-5 ч, на третьей стадии температуру смеси повышают до 145-155°С и при достижении этой температуры смесь перемешивают в течение 4-6 ч с образованием целевого продукта.



 

Похожие патенты:

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способам получения вяжущего, которое может быть использовано в дорожном строительстве.
Изобретение относится к получению противокоррозионных мастик, используемых для защиты стальных поверхностей, изоляции и ремонта трубопроводов различного назначения подземной прокладки, подземных резервуаров, гидроизоляции бетонных и каменных поверхностей, а также в качестве связующего в дорожном строительстве.

Изобретение относится к комбинированным способам получения топлив для судовых двигателей (судовое легкое, судовое высоковязкое легкое и судовое маловязкое топлива) и дорожных битумов глубоковакуумной перегонкой мазутов, легким термическим крекингом вакуумных газойлей (ЛТКВГ) и окислением тяжелых гудронов.
Изобретение относится к мерам предотвращения асфальтеновых отложений и аппаратуре при добыче, транспортировке и переработке нефти. .

Изобретение относится к нефтехимии и технологии полимеров и может быть использовано при переработке гудронов. .

Изобретение относится к способам получения вяжущего с использованием прудовых кислых гудронов и может быть использовано, например, в дорожном строительстве. .
Изобретение относится к области переработки дегтей, пеков, асфальтов, битумов, природных смол и может быть использовано при строительстве и ремонте промышленных и гражданских сооружений, гидротехнических и спецсооружений, в дорожном строительстве, в судоремонте.

Изобретение относится к способам получения анизотропного нефтяного волокнообразующего пека и может быть использовано в нефтеперерабатывающей промышленности

Изобретение относится к способам снижения содержания сероводорода в асфальте
Изобретение относится к области нефтепереработки, в частности к пластификаторам, используемым в производстве битумов. Пластификатор представляет собой продукт взаимодействия 15,0-15,5 мас.% стирола, 2,4-4,0 мас.% пероксида циклогексанона, 3,1-6,0 мас.% 10%-ного раствора нафтената кобальта в стироле и переокисленного битума - остальное. Использование пластификатора позволяет получить битум высокого качества с улучшенными эксплуатационными свойствами, в частности, повысить адгезионные, когезионные и эластичные свойства битума. 1 табл., 1 пр.

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано при переработке нефти или тяжелых углеводородных соединений для получения объемного углеродного каркаса для композитных материалов. В соответствии с заявленным способом подготавливают опалубочную форму, сечение которой определяет профиль углеродного каркаса, и формируют внутри опалубочной формы массив твердотельного плавкого катализатора-порообразователя из отдельных элементов, имеющих либо правильную, либо неправильную геометрическую форму, причем укладывание отдельных элементов осуществляют таким образом, что межреберный зазор формирует по ребрам и вершинам уложенных тел неразрывные межреберные опалубочные каналы. Готовят сырьевую смесь путем введения в тяжелые углеводородные соединения сокатализатора, состоящего из смеси легких углеводородов, заполняют внутри опалубочной формы межреберные опалубочные каналы в теле массива твердотельного плавкого катализатора-порообразователя сырьевой смесью, помещают опалубочную форму полностью в расплав каталитической смеси, имеющей температуру 200-300°C, и выдерживают опалубочную форму в расплаве каталитической смеси до расплавления массива твердотельного плавкого катализатора-порообразователя и образования объемного углеродного каркаса. Затем извлекают опалубочную форму вместе с полученным объемным углеродным каркасом и проводят его очистку от остатков жидкого расплава каталитической смеси. В качестве плавкого катализатора-порообразователя используют смесь хлоридов металлов, имеющую температуру плавления 180-200оС. Технический результат изобретения - упрощение производства углеродного каркаса за счёт исключения стадии получения углеродного волокна. 2 н. и 14 з.п. ф-лы, 3 табл., 4 ил.
Изобретение относится к составу и способу получения мастичной композиции, применяемой для защиты металлических поверхностей, резервуаров, бетонных и кирпичных поверхностей, а также в качестве компонента для производства антикоррозионных мастик, лаков, эмалей. Композиция содержит, мас.%: битум нефтяной или асфальт пропановой деасфальтизации гудрона (АПД) - 86-90, переработанный абсорбент производств бутадиена и изопрена - 5-8, кислота серная - остальное. Сначала битум нефтяной или АПД перемешивают с абсорбентом при температуре 100-110°C в течение 150-180 мин, после чего в реакционную массу вводят кислоту серную прикапыванием со скоростью 40-50 кг/ч при температуре реакционной массы 110-125°C. Далее полученную реакционную массу перемешивают в течение 120-150 мин при температуре 125-130°C, затем повышают температуру до 140°C, после чего продолжают перемешивание в течение 240-300 мин. Затем температуру реакционной массы повышают до 150°C и перемешивают в течение 240 мин, после чего полученный продукт подвергают вылеживанию. Результатом является получение мастичной композиции с антикоррозионными и гидроизоляционными свойствами, при этом обладающей стабильными эксплуатационными свойствами. 2 н. и 5 з.п. ф-лы, 3 табл., 2 пр.

Изобретение относится к удалению сероводорода из потоков вязких нефтепродуктов, таких как нефтяной битум, сырая нефть и мазут, с использованием октоата цинка, причем мольное соотношение цинка и октановой кислоты в составе комплексного соединения превышает 1:2. Технический результат - высокая эффективность нейтрализации сероводорода. 10 з.п. ф-лы, 1 ил., 2 табл., 12 пр.

Изобретение относится к способам получения анизотропного нефтяного волокнообразующего пека и может быть использовано в нефтеперерабатывающей промышленности. Предложен способ получения анизотропного нефтяного волокнообразующего пека путем термообработки изотропного нефтяного пека в инертной атмосфере при повышенной температуре 350-450°C в течение 5-20 часов, давлении 10-100 мм рт.ст. с последующей экстракционной обработкой полученного гетерофазного пека, отгонкой экстрагента и обработкой полученного анизотропного пека в ультразвуковом поле для удаления следов экстрагента, в качестве экстрагента используют легкий прямогонный бензин с температурой начала кипения 62°C, взятого в количестве весовой кратности легкий прямогонный бензин:гетерофазный пек = 5-10:1, а экстракцию проводят при температуре кипения экстрагента в течение 5-20 ч. Результатом является получение анизотропного пека хорошего качества и снижение себестоимости целевого продукта. 1 табл., 1 пр.

Изобретение относится к экстракции легких фракций нефти и/или топлива из природного битума из нефтеносного сланца и/или нефтеносных песков. В способе природный битум экстрагируют путем водной сепарации из нефтеносного сланца и/или нефтеносных песков при образовании твердого остатка, летучие углеводороды отгоняют из природного битума перегонкой, при этом остается нерастворимый нефтяной кокс, включающий до 10% серы, газообразные углеводороды от перегонки разделяют путем фракционной конденсации на легкие фракции нефти, сырую нефть и различные топлива. Способ отличается тем, что твердые остатки из водной сепарации и/или нефтяной кокс используют термически, при этом их превращают путем субстехиометрического окисления кислородсодержащим газом (26) в противоточном газификаторе (19), взаимодействующим с подвижным слоем сыпучего материала (21), при добавлении щелочных веществ при температурах <1800°C в газообразные продукты расщепления с низким содержанием серы, эти продукты расщепления затем преобразуются путем субстехиометрического окисления в физическое тепло, которое применяют для генерирования нагретой водной технологической среды для физического измельчения нефтеносных песков и/или нефтеносного сланца (А) и/или для отделения природного битума из массива горных пород и/или в качестве технологического тепла для тепловой разбивки природного битума, и путем добавления щелочных веществ при восстановительных условиях, газообразные серосодержащие соединения, появляющиеся в противоточном газификаторе (19), преобразуются при температурах выше 400°C из ингредиентов углерод- и серосодержащих остатков путем химической реакции с щелочными веществами в твердые серосодержащие соединения, и эти твердые серосодержащие соединения, по меньшей мере, частично обрабатывают с газообразными продуктами реакции и удаляют из газовой фазы посредством отделения мелкозернистых материалов при температурах выше 300°C. Технический результат - улучшение энергетического баланса, преодоление угрозы окружающей среде. 12 з.п. ф-лы, 2 ил.
Наверх