Система подачи газовоздушной смеси в двигатель

Изобретение относится к области двигателестроения, в частности к системам подачи топливовоздушной смеси в двигатель внутреннего сгорания (ДВС). Система подачи газовоздушной смеси для газодизельного ДВС содержит источник газа (1), управляемые электромагнитные газовые форсунки (7), электронное устройство управления моментом и количеством подачи топлива, линию подвода газообразного топлива, газовый аккумулятор (3) и впускной воздушный трубопровод. Линия подвода газообразного топлива включает трубопровод, редуктор (2) и газовоздушные смесители (5). Газовый аккумулятор (3) выполнен с возможностью компенсации неравномерности подачи газа и устанавливается на участке между газовым редуктором (2) и управляемыми форсунками (7). Объем газового аккумулятора (3) определяется по уравнениям: , , где VA - объем газового аккумулятора, м3, ρA - плотность природного газа при рабочем давлении форсунки, кг/м3, ρ0 - плотность природного газа при поступлении в цилиндры двигателя, кг/м3, V0 - объем природного газа, необходимый для запаса в аккумуляторе, при плотности ρ0 м3, - максимальная цикловая подача природного газа во все цилиндры двигателя, м3, ρ - плотность газа при рабочих условиях, кг/м3, p - давление газа при рабочих условиях, МПа, Т - температура газа при рабочих условиях, °К, ρC - плотность газа при стандартных условиях, кг/м3, ТC - температура окружающей среды при стандартных условиях, К, pC - давление окружающей среды при стандартных условиях, МПа, KC - коэффициент сжимаемости. Впускной воздушный трубопровод выполнен с одинаковой длиной каналов (6) к каждому цилиндру двигателя. Технический результат заключается в поддержании постоянного давления сжатого природного газа перед форсунками и синхронизации колебаний газовоздушной смеси. 1 ил., 3 табл.

 

Изобретение относится к области двигателестроения, в частности к системам подачи топливовоздушной смеси в двигатель внутреннего сгорания.

Известна система подачи газа для газового и газожидкостного двигателя - патент RU №2039882 [дата подачи заявки 14.08.1992 г.], МПК F02M 21/04, содержащая источник газа, редукторы низкого и высокого давления, газовоздушный смеситель с диффузором и дроссельной заслонкой, впускной коллектор. Во внутренней полости впускного коллектора размещена труба со сквозными распределительными окнами, размещенными напротив каналов цилиндров двигателя.

Недостатком данной системы является увеличение сопротивления на впуске при решении задачи по повышению равномерности поступления газовоздушной смеси по цилиндрам двигателя.

Известна также система центрального впрыска газа для двигателя внутреннего сгорания - заявка на изобретение RU №97112804 [дата подачи заявки 10.07.1997 г.], МПК F02M 21/02, содержащая источник сжатого газа, газовый редуктор, электромагнитный газовый клапан с датчиком, дозатор газа, сообщенный с газовым клапаном и подключенный к газосмесительному устройству карбюратора-смесителя двигателя внутреннего сгорания, и переключатель вида топлива.

Однако при неоспоримых достоинствах система, при центральной подаче газа, не обеспечивает равномерность подачи газовоздушной смеси по цилиндрам двигателя.

Известна система впрыска сжатого природного газа для газовых двигателей - патент US 005329908 A [дата подачи заявки 19.07.1994 г.]. Система содержит источник сжатого газа, линии подвода топлива, газовый редуктор с электромагнитным отсечным клапаном, электромагнитные форсунки с аккумуляторами газа в теле форсунки, электронный блок управления (ЭБУ), контролирующий продолжительность впрыска сжатого газа в цилиндры.

Недостатком данной системы является наличие аккумуляторов газа в корпусе форсунки - в данном случае усложняется конструкция форсунки, и при этом размеры форсунки не позволяют аккумулировать запас газа, необходимый для поддержания постоянного давления впрыска.

Наиболее близким по технической сущности аналогом заявляемой системы (прототипом) является устройство подачи природного газа с внешним смесеобразованием в двигатель RU №2291316 [дата подачи заявки 03.08.2005 г.], МПК F02M 21/02, состоящее из источника газа, редуктора, электромагнитных управляемых клапанов и смесителей с числом последних, равным числу цилиндров двигателя.

Недостатком данного устройства является переменное давление газа перед газовыми форсунками ввиду особенностей работы газового редуктора, при пульсирующих потоках в каналах впускного коллектора.

Целью изобретения является повышение мощности двигателя за счет усовершенствования системы впуска газовоздушной смеси путем поддержания постоянного давления сжатого природного газа перед форсунками и синхронизации колебаний газовоздушной смеси путем обеспечения одинаковой длины впускных воздушных трубопроводов к каждому цилиндру двигателя.

Это достигается тем, что систему подачи газовоздушной смеси в прототипе, содержащую источник газа, управляемые электромагнитные газовые форсунки с числом, равным количеству цилиндров двигателя, линию подвода газообразного топлива, включающую трубопровод, редуктор и газовоздушные смесители с числом, равным количеству цилиндров двигателя, предлагается дополнить газовым аккумулятором расчетного объема на участке между газовым редуктором и управляемыми электромагнитными газовыми форсунками, электронным устройством управления моментом и количеством подачи топлива и установить впускной воздушный трубопровод с одинаковой длиной каналов к каждому цилиндру двигателя. При этом объем газового аккумулятора рассчитывается следующим образом.

Газовый аккумулятор находится между редуктором и газовыми форсунками, поэтому там постоянно поддерживается рабочее давление форсунок, создаваемое редуктором.

где VA - объем газового аккумулятора, м3;

ρA - плотность природного газа при рабочем давлении форсунки, кг/м3;

ρ0 - плотность природного газа при поступлении в цилиндры двигателя, кг/м3;

V0 - объем природного газа, необходимый для запаса в аккумуляторе, при плотности ρ0, м3.

В ходе выполнения работы были проведены испытания модернизированной системы питания автотракторного газодизельного двигателя - газодизельной модификации двигателя КамАЗ 7409.10 №889563.

На испытываемом двигателе был установлен ТНВД модели 335-10, со средней величиной цикловой подачи дизельного топлива VЦ.Д.=81,5 мм3/цикл. При работе по газодизельному циклу запальная доза дизельного топлива составляла в среднем 10% от номинального значения цикловой подачи. Оставшиеся 90% топлива замещались природным газом. При этом известно соотношение расхода дизельного топлива и природного газа:

1 л.д.т.=1,3 м3 природного газа.

Отсюда

VЦ.Г.=0,9×1,3×10-6×VЦ.Д.=0,000073 м3,

где VЦ.Г. - максимальная цикловая подача природного газа в один цилиндр двигателя при работе по газодизельному циклу.

Тогда

где - максимальная цикловая подача природного газа во все цилиндры двигателя при работе по газодизельному циклу;

n - количество цилиндров двигателя.

Далее вводим КЗ - коэффициент запаса газа в аккумуляторе.

При KЗ=10 отбор газа из аккумулятора в рабочие цилиндры двигателя за один цикл составляет 10% от общего количества газа, находящегося в аккумуляторе. С учетом подачи газа из редуктора в аккумулятор отклонение давления в газовом аккумуляторе от рабочего давления форсунки находится в пределах 3-5% в зависимости от быстродействия редуктора. Таким образом достигается существенное повышение равномерности подачи газовоздушной смеси в рабочие цилиндры двигателя. Эти расчеты были подтверждены полученными опытными данными (табл.1-3).

Для нахождения VA определим значения ρA и ρ0.

Плотность газа при рабочих условиях рассчитывается по ГОСТ 30319.1-96.

где р - давление газа при рабочих условиях, МПа;

Т - температура газа при рабочих условиях, К;

ρC - плотность газа при стандартных условиях, кг/м3;

ТC - температура окружающей среды при стандартных условиях, К;

рC - давление окружающей среды при стандартных условиях, МПа;

КC - коэффициент сжимаемости.

Коэффициент сжимаемости определяется по ГОСТ 30319.2-96.

Для автотракторного газодизельного двигателя ρC=0,6682 кг/м3.

Значения параметров рС и ТC при стандартных условиях по ГОСТ 2939-63:

рC=0,101325 МПа;

TС=293,15 К.

Тогда для рабочих условий форсунки (р=0,3 МПа и Т=350 К):

Для условий поступления природного газа в цилиндры двигателя (р=0,1 МПа и Т=360 К):

Тогда

Расчетный объем газового аккумулятора для модернизированной системы питания газодизельной модификации двигателя КамАЗ 7409.10 с ТНВД модели 335-10 составил 3,3 л. Таким же образом, используя уравнения (1), (2), и (3) можно рассчитать объем газового аккумулятора для любого автотракторного газового или газодизельного двигателя с другими параметрами.

Для подтверждения достоверности расчетов были проведены стендовые моторные исследования газодизельной модификации двигателя КамАЗ 7409.10 с ТНВД модели 335-10 без газового аккумулятора и с газовым аккумулятором различных объемов. В результате была получена зависимость температуры отработавших газов от конструкции системы питания двигателя. В таблицах 1, 2 и 3 приведены опытные данные, показывающие зависимость температуры отработавших газов в различных цилиндрах исследуемого двигателя от нагрузки и объема газового аккумулятора.

Таблица 1.
Система питания без газового аккумулятора.
М t t t t t t t t
кг м °C °C °С °C °C °С °C °С
10 350 330 300 320 340 320 300 290
20 450 360 340 340 420 330 320 300
30 490 460 420 400 450 420 400 380
40 510 460 430 410 480 440 400 390
50 510 460 430 410 490 430 410 400
60 515 470 450 450 500 450 440 430
70 530 480 460 450 505 470 450 430
Таблица 2.
Система питания с газовым аккумулятором, КЗ=5.
М t t t t t t t t
кг м °С °С °С °С °С °С °С °С
10 360 380 390 400 410 340 360 380
20 400 460 410 440 380 420 400 390
30 480 460 520 440 500 440 450 450
40 490 520 530 520 490 510 480 460
50 530 500 480 480 500 530 510 470
60 530 510 540 490 480 540 520 510
70 540 520 500 490 500 510 490 500
Таблица 3.
Система питания с газовым аккумулятором, КЗ=10.
М t t t t t t t t
кг м °С °C °С °C °C °С °C °C
10 400 400 380 390 400 390 380 390
20 450 450 440 440 440 440 440 430
30 490 480 480 470 490 480 480 470
40 510 510 500 500 500 500 490 490
50 510 510 510 500 510 510 500 500
60 515 510 500 500 510 510 500 500
70 530 530 520 520 530 520 520 520

На фиг.1 показана конструктивная схема предлагаемой системы подачи газовоздушной смеси в двигатель.

Система подачи газовоздушной смеси в двигатель состоит из одноступенчатого газового редуктора 2, газового аккумулятора 3 расчетного объема, электромагнитных управляемых газовых форсунок 7, газовоздушных смесителей 5 с числом, равным количеству цилиндров двигателя. Система содержит также трубопроводы 4, соединяющие источник газа 1 с редуктором, редуктор с аккумулятором, аккумулятор с форсунками, через которые газ поступает в смесители, находящиеся во впускном воздушном трубопроводе 6, где создается смесь газа с воздухом. Редуктор посредством выходного отверстия соединен с входом аккумулятора, с другой стороны аккумулятор соединен с электромагнитными управляемыми форсунками, число которых равно числу цилиндров двигателя.

Сжатый природный газ из источника газа 1 поступает по трубопроводу высокого давления в одноступенчатый газовый редуктор 2, после которого с давлением, необходимым для оптимальной работы газовой форсунки, газ поступает в газовый аккумулятор 3, где находится неснижаемый запас газа под рабочим давлением форсунки. Данный запас позволяет компенсировать неравномерность подачи газа из газового редуктора к газовым форсункам на различных режимах работы двигателя. Из газового аккумулятора газ по линиям подвода газа к форсункам 4 поступает к электромагнитным газовым форсункам 7, контролируемым электронным устройством управления моментом и количеством подачи топлива по сигналам датчика частоты вращения коленчатого вала, датчика массового расхода воздуха и кислородного датчика (не показаны). Порции газа из электромагнитных форсунок попадают в смесители 5 и, предварительно перемешавшись с воздухом, поступающим из впускного воздушного трубопровода 6, попадают в цилиндры двигателя 8. Впускной воздушный трубопровод устанавливается с одинаковой длиной каналов к каждому цилиндру двигателя. Управление работой двигателя производится изменением положения дроссельной заслонки 9.

Система подачи газовоздушной смеси для газодизельного двигателя, содержащая источник газа, управляемые электромагнитные газовые форсунки с числом, равным количеству цилиндров двигателя, линию подвода газообразного топлива, включающую трубопровод, редуктор и газовоздушные смесители с числом, равным количеству цилиндров двигателя, отличающаяся тем, что система снабжена электронным устройством управления моментом и количеством подачи топлива и газовым аккумулятором расчетного объема, выполненным с возможностью компенсации неравномерности подачи газа и устанавливаемым на участке между газовым редуктором и управляемыми электромагнитными газовыми форсунками, причем объем газового аккумулятора определяется по уравнениям , ,
где VA - объем газового аккумулятора, м3, ρA - плотность природного газа при рабочем давлении форсунки, кг/м3, ρ0 - плотность природного газа при поступлении в цилиндры двигателя, кг/м3, V0 - объем природного газа, необходимый для запаса в аккумуляторе, при плотности ρ0, м3, - максимальная цикловая подача природного газа во все цилиндры двигателя, м3, ρ - плотность газа при рабочих условиях, кг/м3, р - давление газа при рабочих условиях, МПа, Т - температура газа при рабочих условиях, К, ρC - плотность газа при стандартных условиях, кг/м3, ТC -температура окружающей среды при стандартных условиях, К, рC - давление окружающей среды при стандартных условиях, МПа, КC - коэффициент сжимаемости, а впускной воздушный трубопровод выполнен с одинаковой длиной каналов к каждому цилиндру двигателя.



 

Похожие патенты:

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания и маслоотделителю для отделения масляных компонентов, содержащихся в газовом топливе.

Изобретение относится к двигателестроению, в частности к топливным системам двигателей внутреннего сгорания. .

Изобретение относится к способу управления газовым двигателем и системе газового двигателя. .

Изобретение относится к двигателестроению и может быть использовано в устройствах для подачи и дозирования топлива в двигателях внутреннего сгорания, в производстве двигателей с принудительным воспламенением.

Изобретение относится к машиностроению, в частности к системам питания сжиженным газом двигателя внутреннего сгорания (ДВС). .

Изобретение относится к двигателям железнодорожного транспорта и касается системы подачи криогенного топлива к двигателям. .

Изобретение относится к способу управления газовым двигателем и системой газового двигателя. .

Изобретение относится к двигателестроению, в частности к топливным системам двигателей внутреннего сгорания. .

Изобретение относится к двигателям внутреннего сгорания, работающим на сжиженном природном газе. .

Изобретение относится к машиностроению и предназначено в качестве клапанного модуля для подачи текучих, прежде всего газообразных, сред в двигатель внутреннего сгорания

Изобретение относится к двигателестроению и может быть использовано в устройствах для подачи газового сжиженного топлива в двигателях внутреннего сгорания, в производстве двигателей для транспортных средств

Изобретение относится к регулятору давления и может быть использовано в системе подачи газовой текучей среды для регулирования давления потока от источника газового топлива к рабочему устройству

Изобретение относится к системе для уплотненного соединения между парой трубчатых секций, предназначенных для пропускания газообразной среды под давлением

Комплект клапанов газовых форсунок для впрыска газа в двигателе внутреннего сгорания, в котором один клапан газовой форсунки имеет внешний нагревательный элемент, а один другой клапан газовой форсунки не имеет внешнего нагревательного элемента. Способ управления работой клапанов газовых форсунок двигателя внутреннего сгорания, работающего на газообразном и жидком топливах, в котором с помощью внешнего нагревательного элемента подогревают один клапан газовой форсунки, подключенный к газовому распределителю и обеспечивающий впрыск газа в двигатель внутреннего сгорания, затем при закрытом запорном клапане между газовым баллоном и газовым распределителем и работе двигателя на жидком топливе открывают подогретый клапан газовой форсунки для впрыска газа из газового распределителя в двигатель внутреннего сгорания, пока давление в газовом распределителе не окажется ниже заданного значения, после чего, оставляя запорный клапан по-прежнему закрытым, клапаны газовых форсунок открывают, пока температура клапанов не достигнет заданного значения. Устройство для управления работой инжекторной системы подачи топлива содержит средства для определения ситуации пуска двигателя внутреннего сгорания, закрытия запорного клапана системы впрыска газообразного топлива и запуска двигателя внутреннего сгорания на жидком топливе с последующим управлением работой клапанов газовых форсунок согласно способу по п.2 формулы при удержании запорного клапана в закрытом состоянии. 3 н. и 4 з.п. ф-лы, 4 ил.

Изобретение относится к устройству подачи топлива в двигатель автомобиля, в частности инжектору для подачи газового топлива в цилиндр двигателя внутреннего сгорания. Инжектор для подачи газового топлива в цилиндр двигателя внутреннего сгорания, в частности двигателя автомобиля, содержит корпус с разъемом питания катушки, размещенные внутри корпуса катушку, сердечник и выполненное с по меньшей мере двумя проходными отверстиями седло, размещенный в сердечнике с возможностью регулируемого перемещения вдоль оси сердечника упор, и выполненный с по меньшей мере одним газоходом якорь, размещенный между сердечником и седлом с возможностью перемещения из крайнего закрытого положения в крайнее открытое положение и поджимаемый к седлу посредством пружины, установленной в продольном канале упора. В проточке сердечника установлена парамагнитная вставка, торцевая поверхность которой выступает над торцевой поверхностью сердечника. В крайнем открытом положении якорь упирается в торцевую поверхность парамагнитной вставки, а внешняя поверхность упора, выступающая над торцевой поверхностью парамагнитной вставки, служит направляющей для якоря. Технический результат от использования предложенного изобретения заключается в увеличении рабочего давления газового топлива и магнитной силы, поднимающей якорь, уменьшении времени открытия и закрытия якоря и физического размера инжектора, уменьшении потребления тока, гарантированном срабатывании инжектора при низких напряжениях бортовой электросети. 15 з.п. ф-лы, 4 ил.

Изобретение может быть использовано для модернизации стареющего парка автомобильного транспорта. Система управления двухтопливным двигателем внутреннего сгорания (ДВС) содержит систему зажигания с высоковольтным N-канальным распределителем, где N - число цилиндров ДВС, системы питания жидким топливом (СПЖТ) и системы питания газовым топливом (СПГТ). Переключение питания осуществляется переключателем вида топлива. СПЖТ выполнена в виде карбюраторной системы питания с экономайзером принудительного холостого хода и электронным управлением. СПГТ содержит газовый баллон с расходно-наполнительной арматурой, дифференциальный газовый редуктор и N быстродействующих электромагнитных клапанов. Управление осуществляется единым микропроцессорным блоком управления. Система управления содержит датчик (Д) температуры газа, Д абсолютного давления, Д состава отработавших газов, Д температуры охлаждающей жидкости, Д момента искрообразования. Система управления обеспечивает формирование оптимального состава топливовоздушной смеси и угла опережения зажигания во всех режимных точках работы ДВС при использовании как жидкого, так и газового топлива. Технический результат заключается в повышении эффективности использования жидкого и газового топлив, а также улучшении эксплуатационных показателей ДВС. 2 ил.

Изобретение относится к насосу для перекачки криогенной текучей среды, например криогенного водорода, из емкости в находящийся под более высоким давлением резервуар, включающему в себя цилиндр с расположенным в нем поршнем, который может выполнять в цилиндре происходящие вперед и назад возвратно-поступательные движения, при этом объем низкотемпературной камеры цилиндра при происходящем в направлении хода поршня первом возвратно-поступательном движении поршня уменьшается, а объем высокотемпературной камеры цилиндра, которая находится на противоположной от низкотемпературной камеры стороне поршня, соответственно увеличивается. Насос также включает в себя оканчивающийся в низкотемпературной камере впускной канал для текучей среды, к которому подсоединена или является подсоединяемой емкость, выходящий из высокотемпературной камеры выпускной канал для текучей среды, к которому подсоединен или является подсоединяемым резервуар, и соединительный трубопровод для текучей среды, через который обе камеры соединены друг с другом, при этом по меньшей мере одно нагревающее устройство выполнено для того, чтобы текущую во время первого возвратно-поступательного движения из низкотемпературной камеры в высокотемпературную камеру текучую среду нагревать таким образом, что в высокотемпературной камере устанавливается давление, которое превышает давление в резервуаре. Увеличивается межремонтный период при применении в автомобилестроении. 1 илл., 12 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для управления газопоршневым двигателем (ГПД) в составе мотор-генераторов и когенерационных установок для использования газа или смеси горючих газов различной теплотворной способности. Система управления ГПД содержит электронный блок управления и связанные с ним термопару, размещенную в выпускном коллекторе, датчики частоты вращения коленчатого вала, углового положения распределительного вала, детонации и расхода воздуха, а также датчики давления и температуры газа. Система дополнительно оснащена перепускным электромагнитным клапаном, установленным на первой ступени двухступенчатого редуктора низкого давления, трубопроводом повышенного давления, соединенным с одной стороны через перепускной электромагнитный клапан с первой ступенью редуктора низкого давления, а с другой стороны через трехходовой регулировочный клапан с газовой магистралью. Технический результат заключается в определении относительной теплотворной способности газа по величине температуры отработавших газов с последующей корректировкой рабочего значения давления газа, чтобы использовать повышенное давление газа от первой ступени двухступенчатого редуктора низкого давления для работы газопоршневого двигателя при повышенных подачах газа, т.е. вблизи внешней скоростной характеристики и на режимах холодного пуска. 1 ил.
Наверх