Турбина для больших ветровых нагрузок



Турбина для больших ветровых нагрузок
Турбина для больших ветровых нагрузок

 


Владельцы патента RU 2443901:

Антуфьев Игорь Александрович (RU)
Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) (RU)

Изобретение относится к ветроэнергетике и может быть использовано для производства электроэнергии. Турбина содержит ветроколесо, изготовленное на установленном на опорной конструкции валу, обмотанном несколькими слоями сетки вокруг стабилизирующих звезд, являющихся модифицированными лопатками турбины. Вал расположен под некоторым углом к воздушному потоку в углублении воздуховода, параллельно которому выполнен дополнительный малый воздуховод, выполняющий роль эжектора для удаления воздуха от нижней, интактной по отношению к воздушному потоку, части ветроколеса. Использование предложенной турбины рентабельно для электростанций-городов с высотным исполнением, где появляется возможность использовать сильные ветра на высотах более 100 метров над землей и возможность размещения несколько ветроагрегатов на разных отметках сооружений. 2 ил.

 

Изобретение относится к ветроэнергетике, в частности к ветротурбинам для использования в ветроэлектростанциях-городах, объединяющих в одном комплексе (здании) жилые и производственные помещения и несколько ветроагрегатов на разных высотах (на разных отметках) этого здания (см. патент РФ №2332585, С2 от 24.10.2006).

Особенностями подобных ветроагрегатов является необходимость уменьшить производственный шум от их работы, сохранив при этом основные мощностные характеристики, а также повысить устойчивость к ветрам ураганной силы, что часто наблюдается на высотах более 150 метров над уровнем океана.

Известны технические решения с концентраторами воздушного потока и расположением турбины (генератора тока) внутри основного канала воздуховода (см. патент РФ № М9 1783144 и патент РФ №2162546).

Важно заметить, что все проекты и расчеты по ветроэнергетике проведены и проводятся в настоящий момент для ветровых горизонтов примерно 30-50 (в крайних случаях - 60) метров над уровнем земли, и расчетные параметры ветров составляют от 5 до 24 м/с (см., например, “Проведение изыскательских работ по оценке ветроэнергетических ресурсов для обоснования схем размещения и проектирования ветроэнергетических установок”: Методические указания. - Л.: Гидрометеоиздат, 1991. - С.56).

Даже при таких скоростях ветра технический потенциал ветровой энергии России в целом составляет свыше 50000 млрд кВтч/год. Этот показатель более чем в 60 раз превышает общее реальное электропотребление страны, а экономический потенциал составляет примерно 260 млрд кВтч/год, т.е. около 30% производства электроэнергии всеми электростанциями России (см., например, http://www.rao-ees.ru/ru/news/-qazeta/179-2005/show.cgi?veter.htm; Раве Р., Бьеррегорд X., Милаж К. Проект достижения выработки 10% мирового электричества с помощью энергии ветра к 2020 г. // Труды форума FED, 1999, а также Атласы ветрового и солнечного климатов России. - СПб: Главная геофизическая обсерватория им. А.И.Воейкова, 1997).

В предложенном патенте РФ №2332585) освоение ветровых горизонтов для выработки энергии происходит, в основном, на высоте 100 и более метров от уровня земли, где скорости ветров, как правило, на порядок выше. Следовательно, и отбор электроэнергии мог бы быть много выше, чем на низком приземном горизонте. Однако на практике такого пока не происходит из-за малой устройчивости ветровых турбин (генераторов) к ветрам большой интенсивности и невероятного шума, который возникает при работе именно ветровых турбин или генераторов при скоростях ветра выше 30 м/с.

Прототипные конструкции по патентам РФ 1783144 и 2162546 не способны работать при ветрах выше 30-40 м/с, поскольку сама конструкция просто улетает с места событий или же воздуховоды сминаются и даже разрушаются. Средства, которые требуется затратить на достаточное укрепление конструкции, могут превысить стоимость самой конструкции.

Как известно, мощность свободного потока воздуха выражается формулой:

P=S*r* V3/2

где Р - мощность воздушного потока (Вт); r - плотность воздуха (около 1.225 кг/м3 на уровне моря, выше - плотность уменьшается); S - площадь ветроколеса, находящаяся под действием ветра (м2); V - скорость ветра (м/с).

Как видно из формулы, выходная мощность ветрового потока увеличивается пропорционально третьей степени скорости ветра. Если скорость ветра возврастает в два раза (например, с 5 м/с до 10 м/с), то энергия ветрового потока возрастает в 8 раз. Результатом данного кубического соотношения является наличие очень небольшого количества энергии на малых скоростях ветра. Отсюда следует, что устанавливать ветротурбины на высотах 100 метров и более несоизмеримо выгоднее, даже невзирая на некоторое уменьшение плотности воздуха, и дело только за приемлемой конструкцией таких турбин (генераторов тока) и самих типов электростанций.

Кроме того, в прототипном варианте (http://www.membrana.ru/invent/?1053794590 и http://your-ecology.narod.ru/article6.html) автор публикации предполагает, что если ветер со скоростью 5 м/с загнать в узкое сопло, то скорость движения воздуха можно довести до 225 м/с (и получить огромную мощность на турбине).

По нашему мнению, это является распространенным заблуждением, поскольку у воздушного потока со скоростью 5 м/с нет и не будет энергии для поддержания сверхураганного потока со скоростью 225 м/с. Здесь совсем другие динамические нагрузки. Чтобы такое предположение стало возможным, нужны другие, внешние источники энергии для воздушного потока, что нереально даже в гипотезах. Поэтому преимущество всегда остается за ветрами большой силы и скорости, которые можно иметь на высотах более 100 метров над поверхностью земли.

Техническим результатом заявленного изобретения является то, что турбина (турбоколесо) выполнена из последовательных слоев сетки, скрепленной внутренними укрепляющими стяжками, причем турбина (вал турбины) расположена горизонтально под некоторым углом к потоку воздуха, что увеличивает площадь соприкосновения турбины с воздушным потоком и повышает отбор мощности. Для улучшения крепления сетки на валу турбины (ветротурбины) в средней его части (или по всей длине вала) выполнены звезды, которые помимо крепления сеток на валу являются также модифицированными лопатками турбины, увеличивающими сопротивление проходящему через сетки ветровому потоку. Вал турбины выполнен (подвешен) на магнитных подшипниках с функцией регулирования скорости вращения и торможения. Помимо этого, канал для воздушного потока (воздуховод) выполнен с сужением и расширением с целью направить поток воздуха на верхнюю половину турбины (турбоколеса), оставляя нижнюю часть интактной по отношению к воздушному потоку.

Параллельно основному воздуховоду с расположенной в нем турбиной устройство имеет дополнительный малый воздуховод, выполняющий роль эжектора по удалению воздуха от нижней (интактной по отношению к воздушному потоку) части турбины, облегчая ее вращение за счет уменьшения сопротивления воздуху внизу опорной части конструкции.

В этой же (нижней части) опорной конструкции могут располагаться лучистые (например, инфракрасные) излучатели для предотвращения обледенения турбины (ветроколеса) при некоторых особенностях сырого и холодного воздуха в зимний период.

Вращение от вала турбины передается на генераторы тока любыми доступными путями, например, с помощью редуктора с регулировкой передаточного числа.

Заявленный технический результат достигается в устройстве, содержащем ветроколесо, изготовленное на установленном на опорной конструкции валу, обмотанном несколькими слоями сетки вокруг стабилизирующих звезд, являющихся модифицированными лопатками турбины, а вал расположен под некоторым углом к воздушному потоку в углублении воздуховода, причем параллельно основному воздуховоду выполнен дополнительный малый воздуховод, играющий роль эжектора для удаления воздуха от нижней, интактной по отношению к воздушному потоку, части ветроколеса.

Такая турбина без специальных сложных лопаток является сверхнадежным дешевым агрегатом, способна противостоять любым ураганным ветрам и сохранять большую часть своей мощности вращения в самых экстремальных случаях, например при обледенении. Наше предложение не исключает использование турбин с лопатками или другими приспособлениями для захвата ветрового потока и передачи его мощности на процесс движения ветроколеса турбины.

В данной заявке мы приводим описание одного из самых дешевых вариантов ветротурбины без сложных и дорогих лопаток, которая передает вращение на генератор электроэнергии через редуктор.

Предлагаемая турбина изображена на фиг.1 и 2, где на фиг.1 представлен общий ход ветропотока и расположение турбины по отношению к этому потоку, а на фиг.2 показано углубление в основной опорной конструкции, где размещена нижняя часть турбины, а также представлен эжекторный канал для отсасывания воздуха от нижней части турбины.

Турбина 1 (фиг.1) расположена в ветроканале 2, образованным несущими стенами 3, параллельно которым выполнены дополнительные перегородки 4, образующие помещения 5 для рабочего персонала и необходимой техники. Турбина защищена двумя рядами сеток 6 с разной величной ячееек, причем наружная сетка имеет ячейку больше (например, в 10 раз), чем сетка, более близкая к турбине.

Вал 7 турбины выполнен с учетом крепления в опорных 8 и стабилизирующих 9 магнитных подшипниках с возможностью ослаблять или усиливать торможение вращению турбины со стороны магнитных подшипников и возможностью передачи вращения на редуктор 10 и генератор 11.

В ветровом канале выполнен анемометр 12 или любой другой контрольный прибор, способный определять скорость ветра и ветровое давление на единицу площади (или на реальный прототип лопатки ветротурбины). Показания анемометра являются датчиком для автоматического регулирования функции магнитных подшипников через процессор (не показан).

Ветровой канал выполнен защищенным с наружных сторон заградительными решетками 13, препятствующими попаданию птиц и других предметов в ветровой канал.

Верхнее перекрытие 14 ветрового канала и часть опорной конструкции 15 формируют суженную часть ветроканала с расположеной в нем турбиной. Под нижней частью опорной конструкции с помощью плоскостей 16 выполнен эжекторный канал 17 с приливом 18 для формирования сужения канала, и открывающимся в этот канал воронкообразным выходом 19 для отсоса воздуха от нижней части турбины (ветроколеса).

В части опорной конструкции выполнено углубление 20, где размещена нижняя часть турбины, из которого происходит отсасывание воздуха. В этом углублении выполнены инфракрасные обогреватели (не показаны) для профилактики обледенения турбины при холодном влажном воздухе.

Вал турбины в своей средней части 21 (или на всем протяжении) снабжен звездами 22 для более прочного крепления слоев сетки на валу турбины. Глубокие слои 23 сетки выполнены более плотной намоткой с меньшим размером ячеи. Внешние слои 24 сетки выполнены прочной, толстой проволокой с большим размером ячеи.

В местах непосредственной близости от турбины на опорной конструкции выполнены закрылки 25 для местного регулирования характеристик воздушного потока перед попаданием его на турбину.

Работает устройство следующим образом.

Ветропоток, захваченный внешними концентраторами и направленный в ветроканал 2, проходит через защитные сетки 6, попадает на турбину 1, которая начинает вращаться и передавать вращение на редуктор 10 и генератор тока 11. Часть ветропотока направляется в эжекторный канал 17, где через конусный выход 19 производится отсасывание воздуха из углубления 20, облегчая вращение турбины 1. Закрылками 25 производят регулировку характеристик ветропотока с целью достижения оптимальных параметров вращения турбины.

Электроток, вырабатываемый генераторами 11, направляется потребителю (не показан).

Турбина для больших ветровых нагрузок, содержащая ветроколесо, изготовленное на установленном на опорной конструкции валу, обмотанном несколькими слоями сетки вокруг стабилизирующих звезд, являющихся модифицированными лопатками турбины, вал расположен под некоторым углом к воздушному потоку в углублении воздуховода, причем параллельно воздуховоду выполнен дополнительный малый воздуховод, выполняющий роль эжектора для удаления воздуха от нижней, интактной по отношению к воздушному потоку, части ветроколеса.



 

Похожие патенты:

Изобретение относится к ветроэнергетике и может быть использовано в ветроэнергетических установках. .

Изобретение относится к ветроэнергетике и может быть использовано при создании установок для получения электрической энергии из энергии ветра, а именно для создания ветроагрегата и ветроэнергетической установки.

Изобретение относится к ветряным двигателям, в частности, к таким, у которых ось вращения ротора перпендикулярна направлению ветра. .

Изобретение относится к области генерирования электроэнергии и, более конкретно, к использованию ветровой турбины для производства электроэнергии. .

Изобретение относится к ветроэнергетике и может быть использовано для энергоснабжения объектов, расположенных на удалении от линий электропередач. .

Изобретение относится к ветроволновой энергетике и может быть использовано для получения электрической энергии. .

Изобретение относится к ветроэнергетике и позволяет при малой скорости ветра получить необходимую скорость вращения потребителя механической энергии, например электрогенератора.

Изобретение относится к области ветроэнергетики и может быть использовано для производства электроэнергии. .

Изобретение относится к возобновляющимся источникам энергии. .

Изобретение относится к ветроэнергетике, касается ветроэнергетических установок и может быть использовано для преобразования энергии ветра в электрическую в производственных целях.

Изобретение относится к области ветроэнергетики и может быть использовано в ветроэнергетических установках

Изобретение относится к энергетике и может быть использовано для выработки электроэнергии без использования топлива

Изобретение относится к области энергетики и может быть использовано для преобразования кинетической энергии потока воздуха (воды) в механическую энергию вращения генератора и/или другого устройства

Изобретение относится к области ветроэнергетики и может быть использовано в ветроэнергетических установках с вертикальной осью вращения

Изобретение относится к инфраструктуре ветроэнергетики - обеспечению стабильной работы ветроэнергетических установок (ВЭУ) карусельного типа [1-6] в суровых климатических условиях путем использования естественной вентиляции теплого воздуха внутри вращающихся элементов ВЭУ, возникающей вследствие центробежных сил

Изобретение относится к ветроэнергетике

Изобретение относится к ветроэнергетике

Изобретение относится к ветроэнергетике

Изобретение относится к области ветроэнергетики и может использоваться для выработки электрической или механической энергии

Изобретение относится к ветроэнергетике и может быть использовано для получения электроэнергии
Наверх