Индикатор магнитного и электрического полей



Индикатор магнитного и электрического полей
Индикатор магнитного и электрического полей

 


Владельцы патента RU 2444022:

Общество с ограниченной ответственностью "КВАРТА-РАД" (RU)

Изобретение относится к индикации и измерениям напряженности электрического и магнитного полей промышленной частоты. Индикатор содержит в корпусе основную плату и три печатных платы с печатными дипольными электрическими антеннами и проводными катушками с ферромагнитным сердечником - датчиками магнитного поля, предварительные усилители, фильтры нижних частот, выходные усилители антенных плат, аналого-цифровых преобразователей управляющего микроконтроллера, жидкокристаллический дисплей, излучатель звука. Две антенные платы, предназначенные для составляющих поля в горизонтальной плоскости, ориентированы во взаимно перпендикулярном направлении, а третья антенная плата, предназначенная для вертикальной составляющей поля, отклонена от взаимно перпендикулярного направления по отношению к двум антенным платам. Выходы антенных плат соединены с входами микроконтроллера с аналого-цифровыми преобразователями. Один из выходов микроконтроллера соединен с входом усилителя, выход которого соединен с излучателем звука. Выходы гальванического элемента соединены с входом преобразователя напряжения, выход которого соединен с другим входом микроконтроллера, а кнопки управления также соединены с одним из входов микроконтроллера. Технический результат: упрощение конструкции, выполнение изотропных одновременных измерений напряженности электрического и магнитного полей промышленной частоты. 2 ил.

 

Изобретение относится к индикации и измерениям напряженности электрического и магнитного полей промышленной частоты, к случаю, когда измерения проводят одновременно и в одном и том же месте, т.е. в одной точке пространства, и может найти применение при контроле их соответствия нормам безопасности воздействия на человека или технические средства.

Известен индикатор электрического поля, содержащий антенны в виде плоских пластин, усилители, компараторы и узел индикации (патент США №4,277,745, МПК G01R 29/08, 1981 г.). К недостаткам данного индикатора можно отнести измерение только электрического поля и три ступени представления результатов.

Известна система широкополосных датчиков для одновременного измерения комплексных Е и Н полей, содержащая набор трех взаимно ортогональных дипольных антенн и трех взаимно ортогональных петлевых антенн, размещенных внутри одного объема пространства, усилители, аналого-цифровые преобразователи, устройства запоминания и индикации результатов (патент США №7,248,054, МПК G01R 29/12; G01R 27/26, 2007 г.). Данная система сложна в изготовлении и не позволяет проводить измерения в узкой полосе на промышленной частоте.

Известен способ измерения напряженности электрического поля, основанный на помещении в исследуемое пространство одновременно n пар проводящих чувствительных элементов, входящих в общий датчик, симметрировании наружных поверхностей датчика относительно координатных плоскостей с расположением центров поверхностей чувствительных элементов попарно на n осях выбранной системы координат симметрично относительно ее начала, при этом датчик ориентируют и затем поддерживают так, чтобы вектор напряженности электрического поля был равноудален от координатных осей датчика, т.е. чтобы его составляющие по координатным осям были равны, а конфигурацию и размер чувствительных элементов выбирают из условия минимума погрешности от неоднородности электрического поля при максимальном пространственном диапазоне, при этом модуль вектора напряженности измеряемого электрического поля определяют измерением составляющих датчика, отличающийся тем, что датчик выполняют трехкоординатным, т.е. n=3, и его ориентируют в пространстве так, чтобы одна из составляющих вектора напряженности по одной из координатных осей датчика стала равна нулю, затем, фиксируя датчик в этом положении, поворачивают датчик вокруг найденной координатной оси до достижения равенства двух других составляющих вектора напряженности электрического поля по координатным осям датчика, при этом модуль вектора напряженности измеряемого электрического поля определяют измерением алгебраической суммы двух не равных нулю составляющих вектора напряженности электрического поля по координатным осям датчика (патент Российской Федерации №2388003, МПК G01R 29/08, 2010 г.). Недостатком изобретения является необходимость вращения датчика для того, чтобы одна из составляющих вектора напряженности по одной из координатных осей датчика стала равна нулю, а также возможность измерения только напряженности электрического поля.

Известен способ оценки безопасности воздействия суперпозиции вращающегося и линейного магнитных полей, заключающийся в том, что в контролируемой точке пространства регистрируют показание Н3 трехкоординатного магнитометра и максимальное показание H1max однокоординатного магнитометра, полученное при изменении его ориентации, вычисляют значения вращающейся Нв и линейной Нл составляющих напряженности магнитного поля по формулам

,

Нл3в, где k3 - калибровочный коэффициент трехкоординатного магнитометра, а затем сравнивают вычисленные значения составляющих напряженности магнитного поля с их предельно допустимыми уровнями (патент Российской Федерации №2398246, МПК G01R 29/08, 2010 г.). Недостатком изобретения является возможность измерений только магнитных составляющих.

Техническим результатом изобретения является упрощение конструкции, выполнение изотропных одновременных измерений напряженности электрического и магнитного полей промышленной частоты.

Технический результат достигается тем, что индикатор магнитного и электрического полей содержит в корпусе основную плату и три печатные платы с печатными дипольными электрическими антеннами и проводными катушками с ферромагнитным сердечником - датчиками магнитного поля, причем две антенные платы, предназначенные для составляющих поля в горизонтальной плоскости, ориентированы во взаимно перпендикулярном направлении, а третья антенная плата, предназначенная для вертикальной составляющей поля, отклонена от взаимно перпендикулярного направления по отношению к двум антенным платам, предварительные усилители, фильтры нижних частот, выходные усилители антенных плат, аналого-цифровых преобразователей управляющего микроконтроллера, жидкокристаллический дисплей, излучатель звука, причем выходы антенных плат соединены с входами микроконтроллера с аналого-цифровыми преобразователями, один из выходов микроконтроллера соединен с входом усилителя, выход которого соединен с излучателем звука, выходы гальванического элемента соединены с входом преобразователя напряжения, выход которого соединен с другим входом микроконтроллера, а кнопки управления также соединены с одним из входов микроконтроллера.

Сущность изобретения поясняется на фиг.1 и 2.

На фиг.1 представлена функциональная схема антенной платы индикатора, где 1 - катушка с ферромагнитным сердечником, 2 - предварительный усилитель, 3 - аналоговый фильтр, 4 - выходной усилитель, 5 - печатная дипольная антенна, 6 - предварительный усилитель, 7, 8 - аналоговые фильтры, 9 - выходной усилитель, 10 - микросхема памяти EEPROM.

На фиг.2 - представлена общая функциональная схема индикатора, где 11, 12, 13 - антенные платы, 14 - микроконтроллер с аналого-цифровыми преобразователями, 15 - жидкокристаллический дисплей, 16 - усилитель, 17 - излучатель звука, 18 - кнопки управления, 19 - гальванический элемент, 20 - преобразователь напряжения.

Индикатор магнитного и электрического полей содержит три печатных антенных платы 11, 12, 13 с датчиками электромагнитного поля. Каждая антенная плата 11, 12, 13 содержит печатную дипольную антенну 5 - датчик электрического поля, и проволочную катушку на ферромагнитном сердечнике 1 - датчик магнитного поля. Ориентация датчиков 1 и 5 на платах и ориентация самих плат 11, 12, 13 в корпусе индикатора обеспечивает изотропность проводимых измерений, избавляя от необходимости вручную изменять ориентацию индикатора в пространстве.

Датчики 1 и 5 преобразуют величины напряженности электрического и магнитного полей в электрические сигналы с сохранением исходной частоты и с амплитудами, пропорциональными напряженностям полей. На антенных платах 11, 12, 13 производят первичную обработку сигналов: предварительное усиление, вырезание высокочастотных составляющих с помощью активных НЧ фильтров и усиление на выходных усилителях 4, 9 антенных плат 11, 12, 13.

Сигналы с антенных плат 11, 12, 13 поступают на входы аналого-цифровых преобразователей, входящих в состав микроконтроллера 14. Микроконтроллер 14 обрабатывает отсчеты мгновенных значений напряженности полей, коррекцию отсчетов по калибровочным коэффициентам для каждого датчика 1 и 5, цифровую фильтрацию с центральной частотой пропускания 50 Гц, вычисление среднеквадратических значений векторов электрического и магнитного поля, усреднение по времени. Представляет результаты в цифровом и аналоговом виде на жидкокристаллическом дисплее индикатора 15, сравнивает полученные значения с пороговыми уровнями, включает излучатель звука 17 при их превышении. В режиме мониторинга проводят измерения на задаваемых пользователем интервалах времени, усреднение результатов, запоминание их в памяти индикатора и воспроизведение их в режиме просмотра. Индикатор позволяет оценить степень опасности для человека, создаваемую окружающим электромагнитным излучением.

Индикатор электромагнитного излучения содержит в корпусе три антенных платы 11, 12, 13, на каждой из которых расположены печатная дипольная электрическая антенна 5 и катушка с ферромагнитным сердечником 1 - магнитная антенна. Антенны 1 и 5 обеспечивают изотропные измерения, исключающие необходимость изменения ориентации индикатора при работе.

Индикатор электромагнитного поля при использовании держат в одной руке, что обеспечивает удобство работы.

Индикатор электромагнитного поля работает следующим образом.

Магнитная составляющая окружающего электромагнитного поля вызывает появление на выходе датчика магнитного поля - катушки с ферромагнитным сердечником 1, сигнала в виде напряжения, совпадающего по частоте и форме с магнитным полем, и с амплитудой, пропорциональной амплитуде напряженности магнитного поля. Этот сигнал увеличивают предварительным операционным усилителем 2. Далее сигнал фильтруют аналоговым фильтром 3, устраняющим высокочастотные составляющие, являющиеся в данном случае помехой. Отфильтрованный сигнал усиливают выходным усилителем 4 и направляют на выходной разъем антенной платы 11, 12, 13.

Электрическая составляющая окружающего электромагнитного поля вызывает появление на выходе датчика электрического поля - печатной дипольной антенны 5, сигнала в виде напряжения, совпадающего по частоте и форме с электрическим полем, и с амплитудой, пропорциональной амплитуде напряженности электрического поля.

Этот сигнал усиливается предварительным усилителем 6, выполненным на операционном усилителе. Далее сигнал обрабатывается аналоговыми фильтрами 7 и 8, выполненными на операционном усилителе и RC-элементах и устраняющими высокочастотные составляющие, являющиеся в данном случае помехой. С выхода фильтра 8 сигнал поступает на выходной усилитель 9, выполненный на операционном усилителе, и далее на выходной разъем антенной платы.

Таким образом, каждая антенна плата 11, 12, 13 обеспечивает два выходных сигнала, соответствующих напряженности электрического Е и магнитного поля В по ее направлению, а три антенные платы 11, 12, 13 - в совокупности Вх, Ex, By, Ey, Bz, Ez.

Антенные платы 11 и 12, предназначенные для составляющих поля в горизонтальной плоскости (X и Y), имеют одну и ту же конфигурацию и являются взаимозаменяемыми. Антенная плата 13 для вертикальной составляющей поля отличается тем, что ее дипольная антенна 5 отклонена от взаимно перпендикулярного направления для улучшения изотропности измерений.

На каждой антенной плате 11, 12, 13 находится также микросхема памяти EEPROM 10, предназначенная для хранения калибровочных коэффициентов для электрического и магнитного датчиков, которые рассчитывают в процессе автоматической калибровки и используют в процессе измерений для масштабирования поступающих с них сигналов.

Выходные сигналы с антенных плат 11, 12, 13 через разъемы платы и согласующие резисторы поступают на входы аналого-цифровых преобразователей 4, входящих в состав микроконтроллера 14. Микроконтроллер 14 производит выборку отсчетов, масштабирование сигналов согласно калибровочным коэффициентам датчиков, цифровую фильтрацию сигнала в частотной полосе 50±2 Гц, вычисление среднеквадратических величин векторов напряженностей электрического и магнитного полей, усреднение на интервале 1 с, представление результатов на жидкокристаллическом дисплее 15. Результаты представляются как в цифровой, так и в аналоговой форме, в последнем случае в виде столбика переменной высоты, что удобно в процессе поиска источника излучения.

Полученные величины напряженности сравнивают с установленными уровнями, и при их превышении включается звуковой сигнал - через усилитель 16 на излучатель звука 17. Управление работой индикатора производится помощью экранного меню и трех кнопок управления 18. Питание индикатора осуществляют от гальванических элементов 19 и преобразователя напряжения 20 для выработки напряжения питания и опорного напряжения.

Кроме отображения текущих величин напряженности электромагнитного поля в индикаторе предусмотрен режим мониторинга, в котором в памяти микроконтроллера 14 запоминают усредненные значения, полученные на временном интервале, величину которого устанавливают по желанию пользователя. В памяти индикатора может храниться до тринадцати таких результатов с соответствующими отметками времени и возможностью просмотра в любой момент.

Индикатор магнитного и электрического полей, характеризующийся тем, что содержит в корпусе основную плату и три печатных платы с печатными дипольными электрическими антеннами и проводными катушками с ферромагнитным сердечником - датчиками магнитного поля, причем две антенные платы, предназначенные для составляющих поля в горизонтальной плоскости, ориентированы во взаимно перпендикулярном направлении, а третья антенная плата, предназначенная для вертикальной составляющей поля, отклонена от взаимно перпендикулярного направления по отношению к двум антенным платам, предварительные усилители, фильтры нижних частот, выходные усилители антенных плат, аналого-цифровых преобразователей управляющего микроконтроллера, жидкокристаллический дисплей, излучатель звука, причем выходы антенных плат соединены с входами микроконтроллера с аналого-цифровыми преобразователями, один из выходов микроконтроллера соединен с входом усилителя, выход которого соединен с излучателем звука, выходы гальванического элемента соединены с входом преобразователя напряжения, выход которого соединен с другим входом микроконтроллера, а кнопки управления также соединены с одним из входов микроконтроллера.



 

Похожие патенты:

Изобретение относится к устройствам для измерения или индикации электрических величин. .

Изобретение относится к микроволновой радиометрии. .

Изобретение относится к микроволновой радиометрии. .

Изобретение относится к микроволновой радиометрии. .

Изобретение относится к технике радиоизмерений и может быть использовано для определения параметров радиотехнических систем, объединенными термином «случайные антенны».

Изобретение относится к области обеспечения информационной безопасности переговоров в выделенных помещениях путем выявления возможных угроз по формированию каналов утечки акустической (речевой) информации через волоконно-оптические системы связи и может быть использовано в системах защиты конфиденциальной речевой информации.

Изобретение относится к области радиотехники. .

Изобретение относится к способу и устройству для определения напряженности поля помехи в самолете. .

Изобретение относится к радиоизмерительной технике и может быть использовано для определения безопасности для окружающей среды. .

Изобретение относится к области антенных измерений и может быть использовано для высокоточного определения местоположения и мощностей источников излучения однопозиционной активной или пассивной локационной системой

Изобретение относится к микроволновой технике

Изобретение относится к электротехнике, в частности к контролю облучения электромагнитными полями

Изобретение относится к электромагнитным испытаниям транспортных средств на уровень излучаемой ими напряженности электромагнитного поля

Изобретение относится к области измерений и контроля уровней электромагнитных полей, создаваемых в помещениях различными источниками электромагнитных излучений (ЭМИ), и может быть использовано для определения их степени влияния на возможность пребывания в различных зонах этих помещений

Изобретение относится к микроволновой радиометрии и может использоваться в радиотермографии для измерения глубинных (профильных) температур объектов по их собственному радиоизлучению

Изобретение относится к радиотехнике и предназначены для поиска и обнаружения источников излучения, определения его местоположения, а также для мониторинга уровня основного и побочных радиоизлучений разного рода бытовых, медицинских и промышленных установок, в том числе наземных РЛС различного назначения в диапазонах дециметровых и сантиметровых радиоволн

Изобретение относится к области приборостроения, а именно к сканирующим радиометрам для зондирования земной поверхности и мирового океана. Радиометр содержит подвижную антенну, генератор опорного сигнала, смеситель, гетеродин, УНЧ с прямым и инверсным выходами, N синхронных детекторов и квадратичный детектор, вход которого подключен к выходу смесителя с усилителем промежуточной частоты, подсоединенного одним входом к выходу гетеродина, два источника опорного излучения, вычитатель, управляемый делитель, N интеграторов, N-1 сумматоров и N-1 умножителей, синхронные детекторы. При этом выход квадратичного детектора соединен со входом УНЧ, N-1 умножителей подключены одними входами через соответствующие интеграторы к выходам соответствующих синхронных детекторов, другими входами - к выходу управляемого делителя и выходами к одним входам соответствующих сумматоров, управляемый делитель подключен управляющим входом к выходу N-го синхронного детектора через N-й интегратор и информационным входом к выходу вычитателя. Кроме того, дополнительно введены датчик скорости носителя, датчик высоты носителя, второй управляемый делитель, усилитель, вход которого соединен с выходом второго управляемого делителя, а выход с управляющим входом интеграторов, N-1 аналоговых ключей, выходы которых соединены с выходами N-1 сумматоров, а управляющие входы соединены с выходами дешифратора, АЦП, блок вторичной обработки, вход которого соединен с выходом АЦП, вход прерывания которого соединен с выходом задающего генератора, а его выход является выходом устройства. Технический результат заключается в улучшении детальности обзора и повышения точности измерения радиояркостной температуры. 1 з.п. ф-лы, 3 ил.

Предлагаемый способ позволяет определять местоположения и мощности источников излучения по измеренной пространственной корреляционной матрице принимаемых сигналов на апертуре приемной антенной решетки (AP). Достигаемый технический результат - упрощение измерений и сокращение времени измерений за счет исключения операции формирования диаграммы направленности антенны в заданных направлениях, а также повышение информативности получаемых данных за счет оценивания взаимно-корреляционных характеристик сигналов источников. Способ заключается в разбиении контролируемой области пространства на элементы разрешения по местоположению, определении коэффициентов ослабления сигналов за счет распространения от каждого элемента разрешения до приемной AP α ( r → k ) и временных интервалов распространения сигналов от каждого элемента разрешения до каждого элемента AP τkn, где k - номер элемента разрешения, n - номер элемента AP, определении коэффициентов пространственного преобразования сигналов w k n = α ( r → k ) e − j ω τ k n , где ω - несущая частота сигналов источников, j - комплексная единица, измерении пространственной корреляционной матрицы принимаемых сигналов Rxx, составлении для всех компонент zim этой матрицы уравнений вида ς μ = z m i = η → μ T ξ → , где µ=(m-1)N+1, m - номер строки, i - номер столбца, η → μ = [ w m 1 w i 1 * w m 1 w i 2 * … w m 1 w i K * w m 2 w i 1 * w m 2 w i 2 * … w m K w i K * ] T , N - число элементов AP, K - число элементов разрешения, ξ → = [ ξ 1     ξ 2 … ξ K 2 ] T - вектор, компонентами которого являются компоненты корреляционной матрицы излучений элементов разрешения, формировании из составленных уравнений векторно-матричного уравнения измерений, определении из него оценки вектора ξ → , формировании из компонент оценки вектора ξ → оценки корреляционной матрицы излучений элементов разрешения, определении по диагональным компонентам полученной матрицы мощностей и местоположений источников излучения. 1 ил.
Наверх