Композиционный антифрикционный твердый смазочный материал

Изобретение относится к области полимерного материаловедения и может быть использовано в машиностроении для изготовления смазочных материалов. Сущность: материал представляет собой нанослои монтмориллонита, поверхность и межслоевые нанопромежутки которого модифицированы 1,1,9-тригидроперфторнонанолом-1 с его содержанием в монтмориллоните, равным 40,04 мас.%. Модификацию проводят при температуре 70°С, частоте ультразвука 40 кГц. Технический результат - высокие трибологические свойства и надежность работы твердого смазочного материала при различной продолжительности и высоких скоростях трения. 1 табл., 1 ил.

 

Изобретение относится к области полимерного материаловедения и может быть использовано в машиностроении для изготовления смазочных материалов с целью улучшения трибологических свойств в эксплуатационном режиме различного рода машин и механизмов.

Известны твердые смазки и на их основе модификаторы трения (Патент РФ 2220189, МПК7 С10М 173/02, опубл. 27.12.2003), представляющие собой водную смазочную композицию для смазки стыкуемых стальных поверхностей, включающая воду, связующий агент, твердый смазочный материал и модификатор трения. В качестве связующего агента в указанной композиции используется натриевый монтмориллонит.

Недостатками композиции являются водная среда, способствующая сильному набуханию монтмориллонита, а также относительная технологическая сложность эксплуатации данной водной смазочной композиции, заключающаяся в возможном вытекании смазки из стыкуемых стальных поверхностей. При этом работа узла трения с данной твердой смазкой характеризуется нестабильным повышенным коэффициентом трения и сильным коррозирующим влиянием этих твердых смазок на металлические поверхности.

Известен состав смазочной композиции (Патент РФ 2351640, МПК С10М 177/00, С10М 125/00, опубл. 10.04.2009), состоящей из взвеси высокодисперсных минералов и жидкого смазочного материала.

Недостатками являются значительная разнородность по минеральному составу и нежелательные процессы агрегирования частиц дисперсной фазы в смазочной композиции.

Известен композиционный триботехнический материал (Патент РФ 2265037, МПК7 C09D 177/00, опубл. 27.11.2005) на основе ультрадисперсного модификатора, функциональной добавки и смеси полиамидов 6 и 11. В качестве ультрадисперсного модификатора используют дисперсные частицы природных силикатсодержащих минералов с размером частиц не более 100 нм.

Основными трудностями в использовании данного триботехнического материала являются сильная зависимость трибологических свойств композиции от размера частиц материала и плохая совместимость компонентов смеси.

Наиболее близким является модификатор трения, представляющий собой бентонит (монтмориллонит) в виде дисперсных частиц с размером 1·102-5·103 Å, модифицированный поверхностно-активным веществом (ПАВ): RfSO2A, где Rf - фторуглеродный радикал формулы (или Rf=XCmF2m, где X=F или Cl при m=3-9, Hal=Cl или J, X1=-CH2CH2OH) (Патент РФ 2194742 МПК7 С10М 141/08, опубл. 10.10.2007):

при n=1-3 ,

Данная композиция используется в производстве смазочных материалов и включает, мас.%: хлорпарафин 92,0-93,0, беззольные антиоксиданты 0,8-1,2, сложный эфир дикарбоновых кислот 6,0-7,0, модификатор трения 0,002-0,02.

Недостатком указанного трибологического смазочного материала является его многокомпонентность, которая повышает коммерческую стоимость продукта, и относительная нестабильность работы в условиях повышенных температур и удельных давлений пар трения. Наличие органомодифицированных монтмориллонитов в виде дисперсии в хлорпарафине приводит к процессам агрегирования частиц модифицированного монтмориллонита. В свою очередь недостатками получения модифицированного монтмориллонита фторсодержащими ПАВ является использование водной среды, которая приводит к процессам интеркаляции (внедрения) молекул воды в межслоевые наногалереи монтмориллонита, повышая тем самым его гидрофильность, и снижает эффективность модифицирования поверхности монтмориллонита. При этом гидрофильность монтмориллонита - основное препятствие для его использования в конструкционном материаловедении. Также недостатком использования указанной композиции является частичное выделение хлороводорода в условиях повышенных температур трения.

Задачей предлагаемого изобретения является создание композиционного антифрикционного твердого смазочного материала, используемого в условиях динамично изменяющихся температур и удельных нагрузок в зонах трения.

Техническим результатом являются высокие трибологические свойства и надежность работы заявляемого антифрикционного твердого смазочного материала при различной продолжительности и высоких скоростях трения.

Поставленный технический результат решается путем использования композиционного антифрикционного твердого смазочного материала на основе модифицированного монтмориллонита, причем он представляет собой нанослои монтмориллонита, поверхность и межслоевые нанопромежутки которого модифицированы 1,1,9-тригидроперфторнонанолом-1 в среде этанола при температуре 70°С, частоте ультразвука 40 кГц в течение 90 мин при массовом соотношении монтмориллонита и 1,1,9-тригидроперфторнонанола-1 - 1:1 соответственно, с содержанием 1,1,9-тригидроперфторнонанола-1 в материале 40,04 мас.%, при этом распределение монтмориллонитовых частиц по размерам составляет, мас.%:

тонкодисперсная фракция диаметром 50-100 нм 10
конгломераты с размерами 10-3 мм 80
крупные частицы в виде пластинок с размерами 10-2 мм 10.

Модификация монтмориллонита полифторированным спиртом - 1,1,9-тригидроперфторнонанолом-1 сопровождается формированием перфторалкильных органофильных слоев как на поверхности монтмориллонита, так и в его межслоевых нанопромежутках. При этом образование органофильных полифторированных слоев способствует значительной гидрофобизации и органофилизации монтмориллонита. Наличие значительного числа атомов фтора в молекуле 1,1,9-тригидроперфторнонанола-1, обладающих отрицательным -I-эффектом, способствует повышению его кислотности и дополнительному его закреплению как на поверхности монтмориллонита, так и в его межслоевых нанопромежутках за счет вытеснения из солей поликремниевых и угольной кислот, а также реакции окислов металлов с полифторированным спиртом, что, в конечном счете, приводит к образованию алкоголятов.

Использование монтмориллонита, модифицированного 1,1,9-тригидроперфторнонанолом-1 в виде частиц указанной дисперсности, способствует характерному слоистому структурообразованию с наличием на поверхности органофильных перфторалкильных слоев, что необходимо для генерирования самовосстанавливающейся поверхностной пленки на трущихся поверхностях в целях обеспечения высоких антифрикционных свойств твердой смазки.

Разработанная методика модификации монтмориллонита 1,1,9-тригидроперфторнонанолом-1 в ультразвуковом поле способствует эффективной гидрофобизации и органофилизации монтмориллонита. Использование этилового спирта в качестве среды для модификации обеспечивает высокую растворимость 1,1,9-тригидроперфторнонанола-1, повышая тем самым его гидрофобизирующую и органофилизирующую способность по отношению к монтмориллониту.

Понижение температуры модификации менее 70°С способствует значительно меньшей конверсии полифторированного спирта и, как следствие, его незначительному содержанию в модифицированном монтмориллоните и понижению трибологических характеристик. Однако повышение температуры модификации свыше 70°С не приводит к увеличению содержания модификатора в монтмориллоните.

Сокращение времени модификации монтмориллонита менее 90 мин способствует понижению содержания 1,1,9-тригидроперфторнонанола-1 в материале и, как следствие, ухудшению антифрикционных характеристик. Напротив, увеличение времени модификации свыше 90 мин не приводит к возрастанию содержания 1,1,9-тригидроперфторнонанола-1 в материале.

Изменение соотношения монтмориллонита и 1,1,9-тригидроперфторнонанола-1 в сторону уменьшения модификатора способствует снижению его доли в монтмориллоните и ухудшению трибологических свойств модифицированного материала и возрастанию контактной температуры. Увеличение содержания модификатора в реакционной смеси не способствует его повышению содержания в монтмориллоните.

Уменьшение частоты ультразвука менее 40 кГц способствует исчезновению тонкодисперсной фракции частиц с диаметром 50-100 нм и снижению содержания модификатора в материале, что приводит к ухудшению смазочных антифрикционных характеристик модифицированного монтмориллонита. Напротив, увеличение частоты ультразвука не приводит к существенному возрастанию указанной тонкодисперсной фракции.

Использовался высокодисперсный слоистый натриевый монтмориллонит с содержанием основного вещества 98% об. (по данным рентгенофазового анализа - прибор дифрактометр ДРОН-3 CuKα (λ=1,5418 Å)). Натриевая форма монтмориллонита представлена нанопакетным пространством с толщиной нанопластин порядка 1 нм и диаметром 20-250 нм. Исходный дисперсный состав немодифицированного монтмориллонита представлен конгломератами с варьируемыми размерами 10-3 мм (до 90 мас.%) и крупными частицами в виде пластинок с размерами 10-2 мм (10 мас.%). Емкость катионного обмена монтмориллонита составляет 80,96 мг-экв/100 г. Минеральный состав и элементный анализ монтмориллонита приведен в табл.

Таблица
Характеристика монтмориллонита Содержание, %
Минеральный состав
Монтмориллонит 98
Гипс 1,2
Кварц и модификации кремнезема 0,3
Кальцит 0,2
Фосфаты 0,2
Полевые шпаты 0,1
Прочие посторонние примеси Ед. зн.
Элементный анализ в пересчете на оксиды
Na2O 3,80
MgO 2,25
Al2O3 16,57
SiO2 53,72
P2O5 0,13
K2O 1,08
СаО 1,51
TiO2 0,69
MnO 0,13
Fe2O3 3,03
Прочие посторонние примеси 17,08
Сумма 99,99
SO3 0,55

В качестве модификатора монтмориллонита использовался полифторированный спирт - 1,1,9-тригидроперфторнонанол-1 (химическая формула H(CF2CF2)4CH2OH).

По данным атомно-силовой сканирующей зондовой микроскопии (сканирующий зондовый микроскоп Solver PRO) монтмориллонит, модифицированный 1,1,9-тригидроперфторнонанолом-1, представлен тонкодисперсной фракцией в виде отдельных частиц диаметром 50-100 нм (10 мас.%), конгломератов с варьируемыми размерами 10-3 мм (до 80 мас.%) и крупных частиц в виде пластинок с размерами 10-2 мм (10 мас.%).

Пример. Натриевый монтмориллонит в количестве 1 г предварительно диспергируют в ультразвуковом поле при частоте 40 кГц в 30 мл абсолютного этанола в течение 1 ч. Далее к дисперсии частиц монтмориллонита в этаноле добавляют 1 г 1,1,9-тригидроперфторнонанола-1 в 20 мл этанола и продолжают диспергирование частиц еще в течение 30 мин при температуре 70°С. Модифицированный монтмориллонит промывают этанолом (10 мл) до нулевой концентрации 1,1,9-тригидроперфторнонанола-1 в растворе. Затем упаривают остатки этанола из модифицированного монтмориллонита и сушат продукт при 100°С.

ИК-спектр ν, см-1 (прибор «Nicolet-6700»): C-H (ν 2875-2951 см-1), C-F (ν 1344-1099 см-1), ОН 1,1,9-тригидроперфторнонанола-1 (ν 3558-3657 см-1).

Трение между двумя металлическими контртелами (материал сталь марки Ст.45) были проведены на машине трения И47К54. Условия испытаний: удельная нагрузка 0,5 кг/см2, скорость - постепенное повышение начиная с 0,5 м/с, фрикционная температура измерялась термопарой, образцы диаметром 22 мм.

Методика трения предусматривала размещение навески на металлическую поверхность, равномерное распределение навески по поверхности, «прижимание» навески вторым металлическим образцом, после чего полученный «сэндвич» размещается в машине трения в вертикальном положении. Определение коэффициента трения проводили согласно ГОСТ 23.002-78.

На фиг. изображен график изменения коэффициента трения во времени для монтмориллонита, модифицированного 1,1,9-тригидроперфтор-нонанолом-1. В процессе эксперимента на металлических поверхностях образуется поверхностный слой, который и обеспечивает успешное трение образца при высокой скорости (2 м/с). Вероятно, особенно низкое значение коэффициента трения образца связано с формированием особенно тонкого поверхностного полифторалкильного органофильного слоя, обогащенного большим числом (CF2CF2)-групп, играющих основную роль в трении, что и свидетельствует о высоких трибологических показателях органо-минеральных структур на основе монтмориллонита, модифицированного 1,1,9-тригидроперфторнонанолом-1. Вероятно, именно формирование полифторалкильных органофильных слоев на поверхностых и в нанослоевых промежутках монтмориллонита способствует получению композитов с высокими антифрикционными самосмазывающимися свойствами за счет генерирования не только поверхностного слоя на этапе приработки, но и возможным влиянием полифторалкильной органофильной упаковкой в подповерхностных слоях в кристаллической структуре монтмориллонита путем их поэтапного истирания в процессе трения, которая, по-видимому не достигается в процессе модификации монтмориллонита фторсодержащими поверхностно-активными веществами.

Как видно из графика, продолжительность трения составляла 1 час: 15 минут при скорости 0,5 м/с - температура 28°С, 15 минут при скорости 1 м/с - температура 31°С, 15 минут при скорости 1,5 м/с - температура 36°С, 15 минут при скорости 2 м/с - температура 47°С, затем наблюдался подъем коэффициента трения и температуры до 50°С. Трение монтмориллонита, модифицированного 1,1,9-тригидроперфторнонанолом-1, характеризуется особенно низким значением коэффициента трения, ниже 0,1. Подобные высокие антифрикционные трибологические показатели связаны также за счет создания на трущихся поверхностях при адсорбционном взаимодействии компонентов модифицированного монтмориллонита с металлом квазисмазочных слоев на локальных участках трения и, как уже отмечалось выше, граничной тонкой оптимизированной самосмазывающейся пленки. Полифторалкильные органофильные слои на поверхности модифицированного монтмориллонита в твердой смазке способствуют повышению эффекта сцепления с поверхностью трения.

Таким образом, модификация монтмориллонита 1,1,9-тригидроперфторнонанолом-1 способствует эффективной органофилизации и гидрофобизации монтмориллонита, что необходимо для получения твердой смазки с повышенными антифрикционными трибологическими свойствами в условиях динамично изменяющихся температур и удельных нагрузок в зонах трения.

Композиционный антифрикционный твердый смазочный материал на основе модифицированного монтмориллонита, отличающийся тем, что он представляет собой нанослои монтмориллонита, поверхность и межслоевые нанопромежутки которого модифицированы 1,1,9-тригидроперфторнонанолом-1 в среде этанола при температуре 70°С, частоте ультразвука 40 кГц в течение 90 мин при массовом соотношении монтмориллонита и 1,1,9-тригидроперфторнонанола-1 - 1:1 соответственно, с содержанием 1,1,9-тригидроперфторнонанола-1 в материале 40,04 мас.%, при этом распределение монтмориллонитовых частиц по размерам составляет, мас.%:

тонкодисперсная фракция диаметром 50-100 нм 10
конгломераты с размерами 10-3 мм 80
крупные частицы в виде пластинок с размерами 10-2 мм 10


 

Похожие патенты:

Изобретение относится к технологии получения смазочных материалов, в частности к антифрикционным суспензиям, которые могут быть использованы при производстве консистентных смазок, предназначенных для высоконагруженных узлов трения машин и механизмов, а также при приработке новых деталей в узлах трения и при ремонтно-восстановительных операциях.

Изобретение относится к железнодорожному транспорту, в частности к модификаторам трения, используемым для нанесения на бандажи колес железнодорожного подвижного состава.
Изобретение относится к высокотемпературным твердосмазочным составам, применяемым в узлах трения при температурах трения до 400°С на воздухе, и способам их получения.
Изобретение относится к высокотемпературным твердосмазочным составам, применяемым в узлах трения при температурах трения до 400°С на воздухе, и способам их получения.
Изобретение относится к области технологий смазки поверхностей трения и может быть использовано для снижения износа систем «колесо-рельс» железнодорожного транспорта и грузоподъемных механизмов.
Изобретение относится к машиностроению и может быть использовано для модификации трущихся поверхностей кинематических пар. .

Изобретение относится к смазочным веществам, в частности, для горячей прокатки труб на непрерывном прокатном стане с удерживаемой оправкой. .
Изобретение относится к машиностроению и может быть использовано при обработке узлов трения нового оборудования для продления межремонтного периода оборудования, а также при проведении ремонтно-восстановительных работ на изношенном оборудовании без его разборки
Изобретение относится к созданию композиционного антифрикционного твердого смазочного покрытия. Композиция антифрикционного твердою смазочного покрытия содержит дисульфид молибдена, азотную кислоту, фосфорную кислоту, азотнокислое серебро, оксид меди, дополнительно содержит тетраэтилтиурамдисульфида медный комплекс, суспензию фторопласта Ф-4Д и компоненты взяты в следующем соотношении, мас.%: дисульфид молибдена 50-56; тетраэтилтиурамдисульфида медный комплекс 4-8; азотнокислое серебро 2-4; азотная кислота 3-7; фосфорная кислота 10-12; оксид меди 1-3; суспензия фторопласта Ф-4Д 13-15; вода остальное. Технический результат - покрытие обладает низким коэффициентом трения, коэффициентом трения покоя и высокой износостойкостью. 2 табл., 7 пр.

Настоящее изобретение относится к смазочной масляной композиции, включающей 100 масс. частей смазки и от 0,01 до 3,0 масс. частей нанопористых частиц, где нанопористые частицы имеют средний размер частиц в интервале от 50 нм до 5 мкм. Техническим результатом настоящего изобретения является повышение эффективности использования топлива за счет оптимизации трения и уменьшения последствий износа. 4 з.п. ф-лы, 56 пр., 8 табл., 1 ил.
Изобретение относится к области машиностроения, а именно - к обработке поверхностей узлов трения, и может быть использовано как при обработке новых деталей и узлов трения, так и при ремонтно-восстановительных работах. Триботехническая композиция для металлических узлов трения включает серпентинит Mg6[Si4O10][OH]8 с содержанием в композиции в диапазоне 30-40 мас.%, хлорит H4Mg2Al2SiO9 с содержанием в композиции 20,0-30,0 мас.%, барит BaSO4 с содержанием 20,0-30,0 мас.%, коалинит Al4[Si4O10](OH)8 с содержанием 10,0-15,0 мас.% и сферокобальтит СоСО3 с содержанием 10,0-20,0 мас.%. Технический результат: создание триботехнической композиции, которая ускоряет выравнивание поверхностей трения, оптимизацию зазоров и повышает износостойкость металлических и металлосодержащих пар трения различных механизмов, что расширяет область ее применения. 3 пр.

Настоящее изобретение относится к продукту для горячей обработки металлов давлением, который представляет собой порошковую смесь из неорганических плавких компонентов, средний размер частиц которых составляет не более 500 мкм, включающую фосфатные, боратные и галогенидные компоненты, причем фосфатные компоненты выбирают из группы фосфатов натрия или калия, либо их смесей, боратные компоненты выбирают из группы, включающей борную кислоту, борный ангидрид, метаборат натрия и их смеси, а галогенидные компоненты выбирают из групп щелочных и/или щелочноземельных металлов, при этом соотношение между фосфатными и галогенидными компонентами определяется выражением (1): 2,0<Ф:Г<75, где Ф - суммарное содержание фосфатных компонентов, мас.%; Г - суммарное содержание галогенидных компонентов, мас.%. Технический результат настоящего изобретения заключается в повышении качества производимой продукции, стойкости инструмента и улучшении экологии окружающей среды. 14 з.п. ф-лы, 2 табл.
Изобретение относится к способу получения антифрикционного композиционного покрытия на стальных изделиях, которое может быть использовано в машиностроении для нанесения на детали узлов трения, работающих в воздушной среде в условиях высоких нагрузок и температур. Осуществляют послойное нанесение никель-фосфорного слоя, наносимого химическим осаждением, слоя алюмохромфосфатного связующего и слоя твердого смазочного покрытия, наносимого на слой алюмохромфосфатного связующего. Слой алюмохромфосфатного связующего наносят путем погружения стального изделия с никель-фосфорным слоем в раствор с алюмохромфосфатным связующим и выдержки в течение 1 минуты, после чего проводят термообработку при 400-410°C в течение 40-45 минут и охлаждение стального изделия до комнатной температуры. Слой твердого смазочного покрытия наносят из суспензии следующего состава, г/л: хлорид кадмия - 10-30, азотнокислый цинк - 20-50, оксид магния - 12-36, азотнокислое серебро - 10-20, ортофосфорная кислота - 200-280, азотная кислота - 5-20, дисульфид молибдена - 200-250 и дистиллированная вода до 1 литра. Затем проводят термическую обработку при 300°C в течение 120 минут. Твердое смазочное покрытие наносят кистью или окунанием. Обеспечивается увеличение износостойкости, а также улучшение трибологических свойств покрытия на узлах трения, работающих в условиях повышенных температур и нагрузок. 2 табл.

Изобретение относится к гелевой мультимодальной добавке, включающей наполнитель, дисперсионную среду, структурообразователь, а именно 12-оксистеарат натрия, модификатор реологических свойств, а именно винипол с молекулярной массой 12000, при этом в качестве наполнителя используют олеофилизованный антигорит, имеющий удельную поверхность не менее 70 м2/г и твердость по Виккерсу не более 1 ГПа, а в качестве дисперсионной среды применяют минеральное моторное масло с содержанием ароматических фракций 70-80%, при следующем соотношении компонентов, мас.%: олеофилизованный антигорит - 25-35; минеральное моторное масло - 55-65; структурообразователь - 2-5; модификатор реологических свойств - 5-8. Техническим результатом настоящего изобретения является расширение эксплуатационных возможностей добавки, полная компенсация износа материалов трения в процессе их эксплуатации, повышение трибологических и вязко-температурных свойств базовых смазочных материалов, нивелирование абразивного воздействия наполнителя добавки на металлические детали трения за счет оптимизации подбора компонентов добавки по термодинамическому, кинетическому и механическому критериям. 1 ил., 5 табл., 5 пр.

Настоящее изобретение относится к способу получения металлсодержащей смазки, используемому при производстве жестких и полужестких материалов на основе ПВХ-композиций. Технический результат достигается в способе получения металлсодержащей смазки для ПВХ-композиций взаимодействием олеиновой или стеариновой кислот с глицерином в присутствии оксида магния и производного другого металла с отгоном реакционной воды, при этом в качестве производного металла используют гидроксид кальция, кислоту приливают к предварительно прогретой при 110°C в течение 1 часа смеси глицерина и гидроксида кальция, а отгонку реакционной воды осуществляют азеотропной отгонкой с использованием толуола при 85-110°C, при мольном соотношении кислота:глицерин:гидроксид кальция:оксид магния равном 4:2:0,5:0,5. Технический результат - упрощение способа получения металлсодержащей смазки для ПВХ-композиций и повышение свойств лубриканта в полимерной композиции, 2 табл.
Наверх