Способ генерации энергии


 


Владельцы патента RU 2444637:

Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)

Изобретение относится к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую (электрическую), преимущественно к транспортным энергетическим установкам и системам энергообеспечения на их основе и предназначено для транспортных средств, снабженных электро- или гибридным приводом. Способ генерации энергии заключается в том, что окислитель низкого давления сжимают многоступенчатым компрессором, а затем направляют в камеру сгорания высокого давления, в которую подают также часть топлива и нагретый поток окислителя высокого давления. Из камеры сгорания продукты сгорания направляют в газовую турбину, а затем в топливный элемент на электрохимическое окисление другой части топлива. По меньшей мере, часть окислителя низкого давления направляют на вход в топливный элемент, а выходящий из него поток сжигают в камере сгорания низкого давления. Окислитель низкого давления, подаваемый на вход в топливный элемент, отбирают из нижних ступеней компрессора. Изобретение направлено на снижение расхода топлива, повышение надежности работы топливного элемента и на уменьшение потерь, связанных с недостаточным расширением продуктов сгорания в турбине. 8 з.п. ф-лы, 1 ил.

 

Изобретение относится к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую (электрическую), преимущественно к транспортным энергетическим установкам и системам энергообеспечения на их основе и предназначено для транспортных средств, снабженных электро- или гибридным приводом.

Известны способы преобразования тепловой энергии газообразного топлива (природный или синтез-газ, водород) в механическую (электрическую), в том числе, в транспортных энергоустановках, преобразующих первичную энергию в электрическую, которая запасается в электроаккумуляторах и затем по необходимости служит приводом движителя транспортных средств. Значительный потенциал имеют гибридные энергоисточники, которые выгодно использовать при постоянной нагрузке, в то время как транспортное средство движется неравномерно, что требует изменения мощности. Из особенностей работы транспортных энергогенерирующих систем известна проблема увеличения эффективности энергоисточника при работе на переменной мощности. Таким образом, возникает задача создания способов преобразования энергии, энергоаккумулирующих установок и систем, способных обеспечивать высокую эффективность генерации энергии в требуемом по условиям потребления неравномерном режиме вне зависимости от графика выработки первичной энергии.

В частности, предложена газотурбинная электроэнергетическая система, содержащая компрессор для сжатия первой среды и электрохимический конвертер, сообщающийся с компрессором и приспособленный принимать первую и вторую среды. Конвертер предназначен для осуществления химической реакции между первой и второй средами, вырабатывая в соответствии с этим электроэнергию и производя выпускной поток, имеющий выбранную повышенную температуру. Электроэнергетическая система дополнительно содержит турбину, сообщающуюся с электрохимическим конвертером и приспособленную принимать выпуск конвертера так, что турбина преобразовывает этот выпуск во вращательную энергию и электроэнергию. Система может дополнительно содержать парогенератор и паровую турбину, которая вырабатывает электроэнергию (заявка РФ на изобретение №97104031, дата публикации 1999.04.10). Недостатком данного способа и устройства является низкая температура на входе в турбину, что снижает кпд.

Известен также способ производства электрической энергии из природного газа с использованием топливного элемента на твердом оксиде, содержащий стадии электрохимического окисления природного газа, прошедшего предварительное расширение, и нагрев природного газа выходящим из топливного элемента потоком (заявка РФ на изобретение №2000107827, дата публикации 2002.01.20). Недостатком данного способа и устройства также является низкая температура на входе в турбину, что снижает кпд.

Частично этот недостаток преодолен в способе и устройстве генерации энергии, в котором с целью повышения эффективности окислитель (воздух) сжимают компрессором, нагревают, а затем направляют в камеру сгорания, в которую подают также часть топлива и нагретый регенеративно поток окислителя и из которой продукты сгорания направляют в газовую турбину, охлаждают входящим потоком окислителя и направляют в топливный элемент на электрохимическое окисление другой части топлива, продукты реакции которого охлаждают потоком окислителя, направляемого в камеру сгорания (заявка США на изобретение №2006/0105207, дата публикации 2006.05.18). Недостатком данного решения является низкая надежность и эффективность генерации энергии, что связано с увеличенными затратами топлива, а также относительно низким кпд газотурбинного преобразования в переходных режимах работы, связанных с низкой скоростью разогрева/охлаждения топливного элемента, ограниченной термостойкостью керамических электродов.

Задача изобретения - повысить динамические и маневренные возможности генерации энергии, снизить расход топлива, уменьшить потери, связанные с недостаточным расширением продуктов сгорания в турбине, повысить надежность работы топливного элемента за счет дополнительных возможностей регулирования его температурных и мощностных режимов вне зависимости от режима газовой турбины, улучшить экономические показатели энергоустановок и систем энергообеспечения и создать условия эффективного повышения надежности энергоисточника.

- Поставленная задача решается тем, что применяют способ генерации энергии, в котором окислитель низкого давления сжимают многоступенчатым компрессором, а затем направляют в камеру сгорания высокого давления, в которую подают также часть топлива и нагретый поток окислителя высокого давления и из которой продукты сгорания направляют в газовую турбину, а затем в топливный элемент на электрохимическое окисление другой части топлива, при этом, по меньшей мере, часть окислителя низкого давления направляют на вход в топливный элемент, а выходящий из него поток сжигают в камере сгорания низкого давления.

Кроме того:

- окислитель низкого давления, подаваемый на вход в топливный элемент, отбирают из нижних ступеней компрессора;

- топливо перед камерой сгорания высокого давления сжимают, испаряют или редуцируют;

- по меньшей мере, часть ступеней компрессора вращают с помощью газовой турбины;

- после камеры сгорания низкого давления выходящий из нее поток охлаждают путем нагрева окислителя и/или топлива;

- сжигание в камере сгорания низкого давления ведут на катализаторе, выбранном на основе палладия, или рения, или платины, или родия, или их соединений;

- регулируют подачу топлива и/или окислителя в топливный элемент в зависимости от потребности в энергии или допустимой скорости разогрева топливного элемента;

- топливо выбирают из ряда, содержащего водород, природный газ, синтез-газ, углеводороды, метанол, аммиак, этиловый спирт или их смеси;

- в качестве окислителя выбирают кислород или воздух.

Примером реализации изобретения служит способ генерации энергии, описанный ниже.

В излагаемом примере осуществления изобретения в качестве топлива применяется природный газ, в качестве окислителя - воздух, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам электрохимического окисления продуктов неполного сгорания природного газа после применения расширительных машин, в частности, на транспортных или стационарных энергоустановках.

На фигуре дано схемное решение предложенного способа генерации энергии.

Способ осуществляется следующим образом.

Проводят расширение продуктов сгорания природного газа в газовой турбине 1, в которую продукты сгорания, образующиеся из воздуха низкого давления, сжимаемого в компрессоре 2, и топлива, подаваемого из емкости природного газа 3, подают из камеры сгорания высокого давления 4, а затем направляют их в топливный элемент 6, в который другая часть природного газа может подаваться также с помощью нагнетателя 5 при давлении преимущественно выше атмосферного. В зависимости от режима работы в топливный элемент 6 подают также воздух, который может отбираться из нижних ступеней компрессора 2. Поток, образующийся за счет электрохимического окисления поступающих в топливный элемент 6 компонентов, направляют в камеру сгорания низкого давления 7, после которой выходящий из нее поток охлаждают путем нагрева окислителя и/или топлива 10 в теплообменнике 9. Сжигание в камере сгорания низкого давления ведут на катализаторе 8, выбранном на основе палладия, рения, платины, родия или их соединений, что позволяет обеспечить беспламенный режим работы при различной температуре.

Топливо (в описываемом примере - природный газ) перед камерой сгорания высокого давления сжимают, испаряют или редуцируют в зависимости от давления и агрегатного состояния топлива, подаваемого из емкости природного газа 3. По меньшей мере, часть ступеней компрессора 2 вращают с помощью газовой турбины 1, что позволяет уменьшить размеры компрессора 2 за счет высоких оборотов.

Регулируют подачу топлива и/или окислителя в топливный элемент 6 регулирующими клапанами 11-13 в зависимости от потребности в энергии или допустимой скорости разогрева топливного элемента 6, которая, в свою очередь, ограничена, в основном, термостойкостью керамических компонентов топливного элемента 6.

В качестве топлива могут применяться также водород, природный газ, синтез-газ, углеводороды, метанол, аммиак, этиловый спирт или их смеси.

В качестве окислителя могут быть выбраны как кислород, так и воздух или их смеси.

В процессе реализации излагаемого способа генерации энергии могут использоваться возможности нагрева топливного элемента 6 с помощью внешнего подвода тепла. Возможно также внутри топливного элемента 6 применять предварительную конверсию топлива путем его частичного окисления окислителем или подаваемым водяным паром, в том числе - в составе продуктов сжигания топлива. Увеличение генерации энергии во время повышения механической нагрузки на газовую турбину 1 ведут как за счет изменения подвода топлива с помощью регулирующих клапанов 11-13, в качестве которых может быть использован тарельчатый клапан, или штоковый вентиль, или любое другое устройство, влияющее на гидравлическое сопротивление прохождению топлива или продуктов его сгорания, так и за счет изменения подачи окислителя из компрессора 2 через регулирующий клапан 12, позволяющий увеличивать отбор окислителя из компрессора 2 минуя камеру сгорания высокого давления с целью увеличения мощности топливного элемента 6.

Таким образом, указанный способ позволит повысить динамические и маневренные возможности генерации энергии, снизить расход топлива, уменьшить потери, связанные с недостаточным расширением продуктов сгорания в турбине, повысить надежность работы топливного элемента за счет дополнительных возможностей регулирования его температурных и мощностных режимов вне зависимости от режима газовой турбины, улучшить экономические показатели энергоустановок и систем энергообеспечения.

1. Способ генерации энергии, в котором окислитель низкого давления сжимают многоступенчатым компрессором, а затем направляют в камеру сгорания высокого давления, в которую подают также часть топлива и нагретый поток окислителя высокого давления и из которой продукты сгорания направляют в газовую турбину, а затем в топливный элемент на электрохимическое окисление другой части топлива, отличающийся тем, что, по меньшей мере, часть окислителя низкого давления направляют на вход в топливный элемент, а выходящий из него поток сжигают в камере сгорания низкого давления.

2. Способ по п.1, отличающийся тем, что окислитель низкого давления, подаваемый на вход в топливный элемент, отбирают из нижних ступеней компрессора.

3. Способ по п.1 или 2, отличающийся тем, что топливо перед камерой сгорания высокого давления сжимают, испаряют или редуцируют.

4. Способ по п,1 или 2, отличающийся тем, что, по меньшей мере, часть ступеней компрессора вращают с помощью газовой турбины.

5. Способ по п.1 или 2, отличающийся тем, что после камеры сгорания низкого давления выходящий из нее поток охлаждают путем нагрева окислителя и/или топлива.

6. Способ по п.1 или 2, отличающийся тем, что сжигание в камере сгорания низкого давления ведут на катализаторе, выбранном на основе палладия, рения, платины, родия или их соединений.

7. Способ по п.1 или 2, отличающийся тем, что регулируют подачу топлива и/или окислителя в топливный элемент в зависимости от потребности в энергии или допустимой скорости разогрева топливного элемента.

8. Способ по п.1 или 2, отличающийся тем, что топливо выбирают из ряда, содержащего водород, природный газ, синтез-газ, углеводороды, метанол, аммиак, этиловый спирт или их смеси.

9. Способ по п.1 или 2, отличающийся тем, что в качестве окислителя выбирают кислород или воздух.



 

Похожие патенты:

Изобретение относится к области машиностроения, в частности к двигателестроению, и может применяться там, где требуется источник горячего газа с высокими энергетическими параметрами, например в газотурбинных и прямоточных двигателях или при расчистке обледенелой взлетно-посадочной полосы.

Изобретение относится к области теплоэнергетики. .

Изобретение относится к способу и установке для комплексной переработки твердого топлива с целью получения из него жидких углеводородных топлив и электроэнергии. .

Изобретение относится к авиадвигателестроению, в частности к газотурбинным двигателям, и может быть широко использовано в двигателях различного назначения. .

Изобретение относится к авиадвигателестроению, в частности к газотурбинным двигателям, и может быть широко использовано в двигателях различного назначения. .

Изобретение относится к авиадвигателестроению, в частности к газотурбинным двигателям, и может быть широко использовано в двигателях различного назначения. .

Изобретение относится к области теплоэнергетики, в частности к комбинированным энергетическим установкам, производящим электрическую и тепловую энергию

Изобретение относится к области энергетики и может быть использовано для выработки электроэнергии гарантированных параметров в широком температурном диапазоне атмосферного воздуха при пониженном выбросе вредных веществ в составе выхлопных газов

Изобретение относится к газотурбинной технологии, используемой для получения работы и генерации электроэнергии или в качестве привода транспортных средств или компрессорных станций магистральных газопроводов

Изобретение относится к способу эксплуатации энергетической установки интегрированным газифицирующим устройством

Изобретение относится к энергетике

Изобретение относится к теплоэнергетике, а именно к способу получения высокотемпературного воздуха для использования его в качестве рабочего тела в газовой турбине

Изобретение относится к области химии. В первом реакторе производят экзотермически-генерированный продукт 4 синтез-газа, преобразуя первую часть потока углеводородного сырья. В теплообменной установке риформинга получают эндотермически-преобразованный продукт 7 синтез-газа, в котором, по меньшей мере, часть тепла используют от экзотермически-генерированного продукта синтез-газа. Поток 7 охлаждают. Охлажденный поток 8 пропускают через высокотемпературный реактор сдвига, в котором часть CO реагирует с паром, давая диоксид углерода и водород. Полученный поток 9 направляют в низкотемпературный реактор сдвига. Полученный поток 11 подают в сепаратор, который отделяет метан от комбинации экзотермически-генерированного продукта синтез-газа и эндотермически-преобразованного продукта синтез-газа, получая поток отходящего газа. При этом нагреватель сжигает, по меньшей мере, часть отходящего газа, используя выхлоп из газовой турбины в качестве окислителя, давая потоки перегретого пара и углеводородного сырья, используемые в экзотермически- и эндотермически-генерированном продукте синтез-газа. Генератор генерирует энергию, используя газовую турбину для приведения в действие установки по производству кислорода, обеспечивая кислород для генерирования синтез-газа. Изобретение позволяет получать водород высокой чистоты при высоком давлении. 3 н. и 26 з.п. ф-лы, 16 ил.

Изобретение относится к энергетике. Твердотопливная газотурбинная установка, содержащая компрессор, турбину, полезную нагрузку, расположенные на одном валу, твердотопливную камеру сгорания, выполненную в виде последовательно установленных газификатора, дожигателя и смесителя, и теплообменник. Компрессор выполнен с входом атмосферного воздуха и выходом, соединенным с входом холодного контура теплообменника. Выход холодного контура теплообменника соединен с входом турбины, выход турбины связан с линией подачи воздуха в камеру сгорания, выполненной в виде трех трубопроводов с дросселями, установленными в трубопроводах подачи воздуха в смеситель и дожигатель. Установка дросселей в трубопроводах подачи воздуха в смеситель и дожигатель определяет минимальные гидравлические потери через газификатор и тем самым обеспечивает максимальный КПД установки. Изобретение позволяет снизить потери по тракту газотурбинной установки, исключает абразивный износ проточной части установки и повышает КПД установки в целом. 2 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике. В изобретении описаны системы постепенного окисления, в которые поступает твердое, жидкое или газообразное топливо и которые обеспечивают обработку твердого, жидкого или газообразного топлива. Система может включать в себя установку для газификации твердого топлива, которая обеспечивает извлечение и очистку газообразного топлива из твердого топлива. Система также может включать в себя реакционную камеру, в которую поступает газообразное топливо и которая обеспечивает поддержание процесса постепенного окисления топлива. В некоторых вариантах осуществления жидкости, содержащие загрязняющие вещества, могут быть подвергнуты окислению в камере постепенного окисления. Жидкое топливо и газообразное топливо могут быть подведены в камеру окисления отдельно или в сочетании. Изобретение позволяет повысить эффективность использования топлива. 7 н. и 55 з.п. ф-лы,16 ил.

Топливная система (8) и способ её промывки для газопаротурбинной установки с интегрированной газификацией угля, включающей газовую турбину (1). Топливная система (8) подключена к камере (3) сгорания газовой турбины (1) и содержит устройство (10) для газификации природного топлива и газопровод (9), ответвляющийся от устройства (10) для газификации и соединенный с камерой (3) сгорания газовой турбины (1). В направлении, обратном потоку, выше камеры (3) сгорания в газопровод (9) встроено устройство (21) для насыщения топлива паром. Имеется промывочный трубопровод (42), встроенный в газопровод (9) между устройством (10) для газификации и устройством (21) для насыщения. Топливную систему (8) промывают посредством введения промывочной среды в газопровод (9) между устройством (10) газификации и устройством (21) для насыщения в направлении камеры (3) сгорания. Достигается повышение надёжности и снижение трудоёмкости промывки. 2 н. и 18 з.п. ф-лы, 1 ил.
Наверх