Автоматизированная система диагностики стационарных дизельных двигателей

Изобретение относится к двигателестроению, в частности к устройствам для диагностики стационарных дизельных двигателей в условиях эксплуатации. Изобретение позволяет повысить точность определения контрольных фактических параметров технического состояния двигателей и их отклонений от номинальных значений, диагностировать стационарный дизельный двигатель, автоматизированно оценить возможность дальнейшей эксплуатации, при одновременном снижении трудозатрат за счет автоматизации процесса измерения первичных величин и анализа полученных данных. Автоматизированная система диагностики стационарных дизельных двигателей состоит из устанавливаемых на испытуемом двигателе датчика частоты вращения, датчика расхода топлива, датчика давления в цилиндре, дымомера, датчика вибрации, блока сопряжения датчиков (АЦП - аналого-цифровой преобразователь) с персональным компьютером (ПК) и самого ПК. На двигателе установлены датчик вибрации, типа ВС202, дымомер, типа «Инфракар Д-1», аналого-цифровой преобразователь, типа Е440 на базе цифрового сигнального процессора ADSP-2185M. 3 ил.

 

Изобретение относится к двигателестроению, в частности к устройствам для диагностики стационарных дизельных двигателей в условиях эксплуатации. Изобретение может быть использовано для повышения точности определения контрольных параметров технического фактического состояния двигателей и их отклонений от номинальных значений, диагностирования стационарного дизельного двигателя, автоматизированной оценки возможности дальнейшей эксплуатации, при одновременном снижении трудозатрат за счет автоматизации процесса измерения первичных величин и анализа полученных данных.

Известна автоматизированная система диагностики бензиновых автотракторных двигателей (а.с. RU 2007123233/06, G01M 15/04). Автоматизированная система основана на том, что в процессе проведения шести циклов операций "разгон-выбег" двигателя сигналы с датчика частоты вращения, датчика расхода топлива, датчика угла опережения зажигания, датчика давления поступают в устройство записи, состоящее из семи основных элементов (трех преобразователей уровня, инструментального усилителя, операционного усилителя, аналого-цифрового преобразователя (АЦП) и микроконтроллера), которое преобразует их в цифровой формат и передает в ПК. После этого полученная информация обрабатывается в ПК и результаты контроля представляются пользователю в виде цифровых значений диагностических параметров и графиков динамических скоростных характеристик двигателя. Однако эта система не позволяет автоматизированно оценить возможность дальнейшей эксплуатации и состояние двигателя. Кроме того, способ не позволяет оценить в полном объеме реальное состояние системы питания и смазки дизельных двигателей, отличающихся от бензиновых, как принципиально по способу воспламенения топливной смеси, так и конструктивно по устройству элементов подачи топлива.

Цель изобретения - повышение точности определения контрольных параметров технического фактического состояния дизельных двигателей, их отклонений от номинальных значений, автоматизированная оценка работоспособности дизельного двигателя при одновременном снижении трудозатрат за счет автоматизации процесса измерения первичных величин и анализа полученных данных.

Автоматизированная система диагностики стационарных дизельных двигателей состоит из устанавливаемых на испытуемом двигателе: датчика частоты вращения, датчика расхода топлива, датчика давления в цилиндре, дымомера, датчика вибрации, блока сопряжения датчиков (АЦП - аналого-цифровой преобразователь) с персональным компьютером (ПК) и самого ПК (рис.1), где:

1 (ЕЕ) - датчик частоты вращения коленчатого вала, типа ДЧВ-2;

2 (АЕ) - датчик вибрации, типа ВС202;

3 (FE) - датчик расхода топлива типа ЭРСВ-011;

4 (РЕ) - датчик давления газов в цилиндре двигателя типа МИДА-ДИ52П;

5 (BE) - дымомер, типа «Инфракар Д-1»;

6 (АЦП) - 32-канальный аналого-цифровой преобразователь типа Е440 на базе цифрового сигнального процессора ADSP-2185M, предназначенный для преобразования аналоговых сигналов, полученных от датчиков в дискретную информацию для передачи в ПК;

7 (ПК) - предназначен для приема измерительной информации от АЦП, ее обработки в соответствии с заданными алгоритмами, визуализации результатов измерения и обработки, а также для хранения на магнитном носителе в цифровом виде. В качестве регистратора используется ПК, совместимый с ПК типа IBM;

8 - стационарный дизельный двигатель;

9 - синхронный генератор, предназначенный для преобразования механической энергии вращения коленчатого вала дизельного двигателя в электрическую энергию.

Автоматизированная система диагностики стационарных дизельных двигателей на базе персонального компьютера (ПК) предназначена для контроля технико-экономических показателей, работоспособности дизельного двигателя и оценки его фактического состояния.

Система для диагностических испытаний двигателей работает следующим образом: в процессе испытаний проводится трехкратное снятие нагрузочной характеристики двигателя, где аргумент нагрузки (Ne) изменяется от 0% до 100% нагрузки, ступенчато, с шагом 25%, в течение которого сигналы, снимаемые с первичных датчиков, установленных на двигателе, поступают в АЦП, который преобразует их в цифровой формат и передает в ПК. Вся полученная информация обрабатывается в ПК с помощью специальной программы и представляется в виде числовых значений параметров технического состояния и графиков нагрузочных характеристик двигателя. Также на основе полученных данных строится логическая модель возможности возникновения неисправностей, позволяющая оценивать фактическое состояние двигателя в реальном времени (рис.2).

В результате решения задачи диагностирования стационарного дизельного двигателя системой определяются нагрузочные характеристики, представляющие собой зависимости:

- технико-экономических показателей двигателя от нагрузочного режима;

- уровня вибрации от нагрузочного режима;

- часового расхода топлива от нагрузочного режима и времени;

- дымности от нагрузочного режима.

По вышеперечисленным зависимостям и по полученным показателям строится логическая модель, на основе которой рассчитываются показатели работоспособности и фактического состояния стационарного дизельного двигателя:

- коэффициент готовности системы;

- коэффициент технического использования;

- наработка на отказ;

- время восстановления системы после отказа;

- значимости измеряемых параметров в работоспособности системы (рис.3).

Устройство может быть использовано в качестве отдельного диагностического средства при плановом техническом обслуживании, поиске неисправностей и регулировке двигателей в условиях повседневной эксплуатации, на ремонтных предприятиях.

Автоматизированная система диагностики стационарных дизельных двигателей состоит из устанавливаемых на испытуемом двигателе датчика частоты вращения, датчика расхода топлива, датчика давления в цилиндре, дымомера, датчика вибрации, блока сопряжения датчиков (АЦП - аналого-цифровой преобразователь) с персональным компьютером (ПК) и самого ПК, отличающаяся тем, что на двигателе установлены датчик вибрации, типа ВС202, дымомер, типа «Инфракар Д-1», аналого-цифровой преобразователь, типа Е440 на базе цифрового сигнального процессора ADSP-2185M.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано при стендовых испытаниях жидкостных ракетных двигателей (ЖРД) и других энергоустановок с криогенными компонентами топлива.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными установками (ГТУ) газоперекачивающих агрегатов (ГПА) и газотурбинных электростанций (ГТЭС).

Изобретение относится к технике испытаний газотурбинных двигателей (ГТД) и может быть использовано как герметичное компенсирующее устройство стыка между фланцем присоединенного трубопровода и переходным фланцем газотурбинного двигателя при температуре рабочего воздуха, подаваемого на вход ГТД.

Изобретение относится к технике испытания в эксплуатационных условиях двигателей внутреннего сгорания (ДВС) с воспламенением рабочей смеси от сжатия. .

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД).

Изобретение относится к технической акустике. .

Изобретение относится к области эксплуатации и диагностики авиационного газотурбинного двигателя. .

Изобретение относится к технике испытаний газотурбинных двигателей (ГТД) и может быть использовано для определения их тяговых характеристик Входное устройство для испытаний газотурбинных двигателей в термобарокамере, содержащее входной коллектор, узел лабиринтного уплотнения, присоединенный трубопровод, выполненный из набора патрубков, патрубок входа в двигатель, опоры для крепления входного коллектора к термобарокамере и опоры для крепления присоединенного трубопровода к динамометрической платформе, причем входной коллектор, узел лабиринтного уплотнения, присоединенный трубопровод и патрубок входа в двигатель последовательно соединены между собой герметичными шарнирами, а один патрубок узла лабиринтного уплотнения со стороны входного коллектора закреплен на опорах к термобарокамере, а другой патрубок со стороны двигателя закреплен на опорах к динамометрической платформе.

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании двигателей внутреннего сгорания (ДВС). .

Изобретение относится к методам контроля в эксплуатационных условиях поршневых двигателей внутреннего сгорания (ДВС)

Изобретение относится к способам диагностики технического состояния газотурбинного двигателя (ГТД) с применением нейронных сетей

Изобретение относится к авиадвигателестроению, а именно, к новому направлению в нем - гиперзвуковым прямоточным воздушно-реактивным двигателям (ГПВРД), прежде всего - к определению угла поворота вектора силы тяги двигателя с косым срезом сопла по результатам летных испытаний ГПВРД на гиперзвуковой летающей лаборатории (ГЛЛ)

Изобретение относится к области контроля технического состояния агрегатов современных газотурбинных двигателей (ГТД)

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД

Изобретение относится к области эксплуатации машин и машиностроению и может быть использовано при обкатке, контроле, испытании и диагностировании двигателей внутреннего сгорания (ДВС)

Изобретение относится к ракетной технике и может быть использовано для экспериментальной отработки при создании и модернизации маршевых однокамерных и многокамерных установок, в частности для имитации высотных условий при огневых испытаниях жидкостных ракетных двигателей с соплами больших степеней расширения

Изобретение относится к измерительной технике и может быть использовано для определения технического состояния двигателей внутреннего сгорания (ДВС) в эксплуатационных условиях

Изобретение относится к области авиадвигателестроения и, в частности, к способу испытаний маслосистемы авиационного газотурбинного двигателя (ГТД) для определения ее работоспособности, заключающемуся в воспроизведении на двигателе условий отрицательной силы тяжести, невесомости и «масляного голодания», появляющихся при выполнении самолетом фигурных полетов
Изобретение относится к турбореактивным двигателям и к системам управления топливоподачей совместно с управлением другими параметрами турбореактивного двигателя, а именно критического сечения реактивного сопла и давления на турбинах

Изобретение относится к двигателестроению, в частности к устройствам для диагностики стационарных дизельных двигателей в условиях эксплуатации

Наверх