Перестраиваемый формирователь синхроимпульсов

Изобретение относится к вычислительной технике и может быть использовано при создании управляющих вычислительных систем, работающих длительное время при неблагоприятных внешних условиях, к которым относятся повышенная температура и ионизирующее излучение. Техническим результатом является повышение достоверности обработки информации за счет поддержания частоты следования синхронизирующих импульсов задающего генератора на требуемом значении. Изобретение состоит из формирователя синхроимпульсов, содержащего кольцевой задающий генератор на основе (n+1) последовательно соединенных инверторов, мультиплексора и узла формирования синхроимпульсов. В качестве дополнительных блоков в его состав включены регистр кода частоты, счетчик кода частоты, счетчик кода управления, схема сравнения, счетчик контрольного интервала и кварцевый генератор. 1 ил.

 

Изобретение относится к вычислительной технике и может быть использовано при создании управляющих вычислительных систем, работающих длительное время в неблагоприятных внешних условиях, к которым относятся повышенная температура и ионизирующее излучение, что характерно для работы систем управления объектами ракетно-космической техники.

В последнее время компоненты управляющих вычислительных систем реализуются с использованием интегральных микросхем (ИМС), в том числе большой степени интеграции, которые изготавливаются в основном на основе КМОП транзисторов, для которых характерно изменение параметров (деградация) от действия температуры окружающей среды и дозовых эффектов, вызванных ионизирующим излучением как естественных радиационных полей, так и искусственных. Для ИМС деградация параметров транзисторов ведет к снижению быстродействия, т.е. увеличению времени прохождения информации через узлы устройства. В результате со временем цифровые вычислительные устройства перестают правильно перерабатывать информацию, переработка которой происходит под управлением сетки импульсов, синхронизирующих моменты занесения информации в элементы памяти (триггеры). Запаздывание достоверной информации к моменту занесения в триггер относительно расчетных значений приводит к фиксации недостоверной информации и, следовательно, к неправильной работе устройства в целом.

В то же время устройство, не имея катастрофических отказов (нарушений конструкции), способно правильно работать при снижении быстродействия, которое может быть достигнуто понижением частоты следования синхронизирующих импульсов. Возникает задача в процессе работы подобрать такую частоту следования синхроимпульсов, которая обеспечивает достоверную обработку информации.

Все цифровые вычислительные устройства имеют в своем составе формирователи сетки синхроимпульсов определенной последовательности и длительности. Основу таких формирователей составляет задающий генератор, формирующий опорную частоту, которая определяет и длительность синхроимпульсов, и фазовые соотношения между ними. Для изменения быстродействия необходимо изменить частоту работы задающего генератора. Современные управляющие вычислительные системы имеют, как правило, иерархическую структуру, в которой для каждого компонента (модуля) есть управляющий модуль, способный дать команду (код) на задание нужной частоты работы формирователя синхроимпульсов. Возникает задача реализации задающего генератора, способного изменять частоту по внешним сигналам (командам) управления.

Известен «Термостабилизированный генератор на логических элементах, управляемый напряжением». (См. Информационный листок ВИМИ №66-0499/УДК 621.373.121 / Рубрика 47.41.31 от 04.02.1986).

Реализация задающего генератора с использованием описанного решения позволяет изменять частоту следования импульсов подачей управляющего напряжения на его вход. Однако формирование управляющего напряжения с требуемой точностью в цифровой системе является само по себе сложной задачей, которая становится проблемой при работе аппаратуры в неблагоприятных внешних условиях, указанных выше, так как требуется нейтрализация дестабилизирующих факторов, особенно ионизирующего излучения, влияние которого трудно предсказуемо.

Более эффективно задача решена в известном устройстве (См. «Устройство для формирования импульсов» / Изобретение SU 138031. Н03К 5/156 от 15.09.1987), которое может быть принято в качестве ПРОТОТИПА.

Данное устройство содержит собственно формирователь импульсов и задающий генератор, реализованный на основе n+1 элемента НЕ (инвертора), которые включены последовательно. Выход каждого элемента подключен ко входу мультиплексора, выход которого подключен к входу первого инвертора. В результате образуется так называемый «кольцевой генератор».

Подавая код управления на мультиплексор, можно изменять количество инверторов, образующих кольцо, изменяя тем самым частоту этого задающего генератора.

Основным достоинством такого решения является то, что оно может быть реализовано в виде ИМС, т.е. хорошо встраивается в модули вычислительной системы без использования элементов аналоговой техники с присущей им нестабильностью работы во времени.

Однако входящие в кольцо инверторы также могут менять быстродействие из-за деградации параметров транзисторов, на которых они реализованы. Для устранения несанкционированного изменения частоты необходимо ввести в устройство дополнительные блоки, обеспечивающие поддержание частоты задающего генератора на требуемом значении.

Предлагается перестраиваемый формирователь синхроимпульсов, содержащий кольцевой задающий генератор на основе n+1 последовательно соединенных инверторов, мультиплексор и узел формирования синхроимпульсов, выходы которого являются выходами формирователя. Причем выходы инверторов подключены к входам мультиплексора, выход которого подключен к входу узла формирования синхроимпульсов и входу первого инвертора. Дополнительно в состав формирователя введены регистр кода частоты, счетчик кода управления и счетчик контрольного интервала, установочные входы которых являются входами формирователя. Кроме того, в состав формирователя введены кварцевый генератор, счетчик кода частоты и схема сравнения. При этом вход счетчика кода частоты подключен к дополнительному выходу узла формирования синхроимпульсов, а его синхронизирующий вход объединен с входом узла формирования синхроимпульсов и входом первого инвертора и подключен к выходу мультиплексора. Выходы счетчика кода частоты подключены к первому входу схемы сравнения, у которой второй вход задан распайкой на шины питания, а первый и второй выходы подключены соответственно к инкрементному и декрементному входам счетчика кода управления. Синхронизирующий вход схемы сравнения подключен к выходу счетчика контрольного интервала, счетный вход которого подключен к выходу кварцевого задающего генератора. На чертеже приведена структура формирователя, где цифрой 1 обозначен кольцевой задающий генератор, цифрой 2 - мультиплексор, цифрой 3 - узел формирования синхроимпульсов, цифрой 4 - счетчик кода частоты, цифрой 5 - счетчик кода управления, цифрой 6 - схема сравнения, цифрой 7 - счетчик контрольного интервала, цифрой 8 - кварцевый генератор и цифрой 9 - регистр кода частоты.

Формирователь работает следующим образом.

В счетчик кода управления 5 и счетчик контрольного интервала 7 через установочные входы заносятся коды, соответствующие требуемому значению частоты. Счетчик 4 ведет подсчет импульсов, поступающих с дополнительного выхода узла формирования синхроимпульсов. Содержимое счетчика в момент времени, заданный сигналом со счетчика контрольного интервала 7, точность работы которого определяет стабильность кварцевого генератора 8, сравнивается схемой сравнения 6 с заданным в регистре 9 значением частоты. Если текущее значение частоты меньше заданного, то с первого выхода схемы сравнения поступает импульс на инкрементный вход счетчика кода управления 5 и его значение увеличивается. Новый код, поступающий на вход мультиплексора 2, приводит к подключению на выход более раннего инвертора из кольца, в результате чего частота возрастает, а если текущее значение частоты больше заданного, то со второго выхода схемы сравнения поступает импульс на декрементный вход счетчика кода управления, в результате чего его значение уменьшается и новый код, поступая на мультиплексор, обеспечивает подключение более позднего инвертора из кольца, в результате чего частота снижается.

Таким образом, обеспечивается динамическая перестройка частоты, которая компенсирует изменение параметров, инверторов, образующих задающий генератор, что позволяет непрерывно поддерживать заданное значение частоты, стабильность которого позволяет поддерживать кварцевый генератор, на основе частоты которого формируется контрольный интервал.

Перестраиваемый формирователь синхроимпульсов, содержащий узел формирования синхроимпульсов, выходы которого являются выходами формирователя, кольцевой задающий генератор, включающий (n+1) последовательно соединенных инверторов, подключенных выходами к мультиплексору, выход которого подключен к входам первого инвертора и узла формирования синхроимпульсов, выходы которого являются выходами формирователя, отличающийся тем, что в его состав введены регистр кода частоты, счетчик кода частоты, счетчик кода управления, схема сравнения, счетчик контрольного интервала и кварцевый генератор, причем входы счетчика кода управления и счетчика контрольного интервала являются установочными входами формирователя, выходы которого являются выходами узла формирования, дополнительный выход которого подключен к счетному входу счетчика кода частоты, синхронизирующий вход которого объединен с входом первого инвертора и подключен к выходу мультиплексора, а выход этого счетчика подключен к первому входу схемы сравнения, второй вход которой подключен к выходу регистра кода частоты, а ее синхронизирующий вход подключен к выходу счетчика контрольного интервала, вход которого подключен к выходу кварцевого генератора, при этом первый и второй выходы схемы сравнения подключены соответственно к инкрементному и декрементному входам счетчика кода управления, выход которого подключен к управляющему входу мультиплексора.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты, в состав которых входят датчики, вырабатывающие двухполярные сигналы, в частности индукционные датчики частоты вращения и расхода.

Изобретение относится к электронным схемам общего назначения и может быть использовано в системах автоматического управления для ограничения сигналов в дополнительном цифровом коде, превышающих динамический диапазон, в частности в радиолокационных станциях для подавления пассивных помех.

Изобретение относится к генератору псевдопериодического сигнала, используемому в различных целях и, в частности, для плазменного автомобильного зажигания с радиочастотным возбуждением резонатора многоискровой свечи.

Изобретение относится к генератору псевдопериодического сигнала, используемому в различных целях и, в частности, для плазменного автомобильного зажигания с радиочастотным возбуждением резонатора многоискровой свечи.

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. .

Изобретение относится к устройствам формирования электрических колебаний со стабилизированной частотой. .

Изобретение относится к импульсной технике и технике связи для усиления импульсного сигнала. .

Изобретение относится к импульсной технике и технике связи для усиления импульсного сигнала. .

Изобретение относится к технике связи для использования в различных технических, в том числе радиофизических, системах, для усиления импульсов в различных системах передачи и приема информации и в других технических импульсных системах.

Изобретение относится к электронным схемам, специально предназначенным для сравнения амплитуд, и может быть использован в измерительной технике с допусковым контролем, в системах контроля и сигнализации.

Изобретение относится к импульсной технике и может быть использовано для формирования прямоугольных импульсов с изменяемой длительностью в устройствах радиоавтоматики и системах автоматического управления летательными аппаратами

Изобретение относится к области информационных технологий, к системам и технологиям регулирования, управления скорости информационного потока цифровых данных и аналоговых сигналов

Изобретение относится к вычислительной технике и может быть использовано при создании управляющих вычислительных систем, работающих длительное время в неблагоприятных внешних условиях

Изобретение относится к области электротехники, а именно к компараторам с постоянной нагрузкой при высокой частоте сигнала данных, которые являются частью интегральной схемы и могут применяться в мобильных телефонах, в аналого-цифровых преобразователях, а также могут быть использованы как часть цепи фазовой автоподстройки частоты

Изобретение относится к области электронной техники и может быть использовано в дифференциальных частотных датчиках

Изобретение относится к импульсной технике, в частности к инфранизкочастотным импульсным устройствам с термозависимыми времязадающими элементами, и может быть использовано в приборах автоматического контроля и регулирования

Изобретение относится к резервированному формированию вычислительных систем

Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты

Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты, в состав которых входят датчики, вырабатывающие двухполярные сигналы, в частности индукционные датчики частоты вращения и расхода

Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты, в состав которых входят датчики, вырабатывающие двухполярные сигналы, в частности индукционные датчики частоты вращения и расхода

Изобретение относится к вычислительной технике и может быть использовано при создании управляющих вычислительных систем, работающих длительное время при неблагоприятных внешних условиях, к которым относятся повышенная температура и ионизирующее излучение

Наверх