Устройство компенсации высших гармоник и коррекции коэффициента мощности сети

Использование: в области электротехники. Технический результат заключается в снижении коэффициентов искажения синусоидальности тока и напряжения сети, а также в повышении коэффициента мощности сети. Устройство содержит инвертор, накопительный конденсатор, выходной сглаживающий пассивный фильтр и контроллер системы управления, при этом контроллер системы управления снабжен датчиком тока фильтра, датчиком тока сети, датчиком напряжения, формирователем импульсов на основе релейных регуляторов с изменяемой шириной гистерезиса, фазовыми преобразователями тока и напряжения, блоком фазовой синхронизации и регулятором напряжения накопительного конденсатора. Устройство позволяет повысить уровень качества электрической энергии в сети с нелинейной нагрузкой с помощью параллельного активного фильтра, осуществляющего компенсацию высших гармоник тока и напряжения с использованием алгоритма прогнозирования при анализе спектрального состава напряжения и тока сети и формировании компенсационного тока. Устройство также способно осуществлять компенсацию реактивной мощности. 2 ил.

 

Изобретение относится к электротехнике и электроэнергетике, а именно к устройствам подавления и компенсации высших гармоник в электрических сетях и коррекции коэффициента мощности. Устройство может быть использовано в системах электроснабжения промышленных предприятий с большим количеством нелинейной нагрузки.

Известно устройство для управления активным фильтром (патент JP №3125354, дата приоритета: 27.09.1991), содержащее сумматор, регуляторы напряжения и тока, генератор, компаратор и вычислительную схему. Сумматор складывает выходной сигнал регулятора напряжения с напряжением сети; генератор вырабатывает опорный фазовый сигнал в результате контроля нулевого уровня выходного сигнала сумматора компаратором. Полученный в результате опорный фазовый сигнал поступает в вычислительную схему. Основная составляющая выходного тока источника питания определяется вычислительной схемой, после чего определяется разность между фактическим током сети и вычисленной основной гармоникой. Выходной сигнал регулятора напряжения, поддерживающего напряжение на стороне постоянного тока преобразователя равным заданной величине, умножается на выходное напряжение источника питания переменного тока, в результате чего определяется сигнал задания по переменному току. Полученный сигнал алгебраически суммируется с разностью между фактическим током сети и вычисленной основной составляющей со знаком, соответствующим компенсации потерь в инверторе.

Недостатком устройства является невозможность регулятором тока формировать, помимо задания на ток компенсации высших гармоник тока и напряжения, задание на компенсацию реактивной мощности в условиях динамичного режима работы нелинейной нагрузки. Устройство не позволяет выполнять фазовую синхронизацию напряжения и тока сети с целью компенсации реактивной мощности.

Известен активный фильтр (патент JP №6091711, дата приоритета: 04.03.1988), содержащий инвертор, накопительный конденсатор, вычислительные схемы и блок памяти. Выходной ток активного фильтра корректируется в зависимости от регулирующей величины тока, в качестве которой используется высокочастотная составляющая тока нелинейной нагрузки. Активный фильтр в данном устройстве содержит вычислительные схемы, определяющие разность между регулирующей величиной тока и выходным током фильтра, и блок памяти, на вход которого поступает выходной сигнал схем, где записана, по меньшей мере, часть периода регулирующей величины тока. В самообучающихся схемах управления за опорные приняты моменты времени, следующие через интервалы запаздывания, например, равные одному периоду регулирующей величины тока. Вычислительные схемы вырабатывают сигнал корректировки регулирующей величины тока в результате считывания содержимого блока памяти с опережением опорных моментов времени на определенный интервал, равный времени запаздывания выходного тока фильтра.

Недостатком устройства является невозможность выполнения фазовой синхронизации напряжения и тока компенсируемой сети, а механизм подавления высших гармоник основан на корректировке регулирующей величины тока в течение времени запаздывания фильтра, что в условиях режима динамичного изменения тока нелинейной нагрузки не позволит фиксировать и отрабатывать резкие скачки тока сети. В устройстве отсутствует регулятор напряжения накопительного конденсатора для управления величиной компенсационного тока и отработки резких изменений тока компенсируемой нагрузки. Устройство не позволяет инвертору активного фильтра работать с переменной частотой ШИМ.

Известно устройство управления активным фильтром (патент JP №6055009, дата приоритета: 16.11.1987), содержащее блок фазовой синхронизации, вычислительные схемы, накопительный конденсатор и инвертор. Блок фазовой синхронизации вырабатывает фазовые сигналы синхронно с напряжением источника, которые обрабатываются вычислительными схемами. В результате формируются высокочастотные сигналы тока, являющиеся разностью между сигналами тока основной гармоники и сигналами измерения тока нагрузки, которые используются в качестве опорных сигналов при регулировании с применением ШИМ выходного тока активного фильтра.

Недостатком устройства является отсутствие регулятора напряжения накопительного конденсатора, и что инвертор в составе устройства работает с постоянной частотой ШИМ.

Известен активный фильтр высших гармонических составляющих токов и устройство коррекции коэффициента мощности, принятое за прототип (патент US №5977660, дата приоритета: 08.08.1997), содержащее инвертор, контроллер, накопительные конденсаторы и выходной пассивный сглаживающий фильтр. Контроллер выполняет процедуру прогноза тока в следующий промежуток времени с целью уменьшения создаваемой нагрузкой разницы фаз между током и напряжением сети. Управляющая процедура выполняет интегрирование разницы между реальными токами в линии и их требуемыми значениями в эквивалентные промежутки времени на различных циклах переменного тока основной частоты. Интегральные величины можно комбинировать с пропорционально регулируемыми разностными токами для снижения или полной компенсации гармонических токов. Процедура балансировки токов позволяет активному фильтру выравнивать токи в многофазных силовых линиях. Все эти процедуры можно использовать как по отдельности, так и вместе.

Недостатком прототипа является невозможность инвертора работать с переменной частотой ШИМ.

Технический результат изобретения заключается в снижении коэффициентов искажения синусоидальности формы кривых тока и напряжения сети при наличии нелинейной нагрузки, режим работы которой связан с динамическим изменением потребляемого несинусоидального тока, и повышении коэффициента мощности сети. Предлагаемое устройство может быть востребовано в сетях предприятий, где широкое распространение получила нелинейная нагрузка в виде различного типа преобразователей частоты систем регулируемого электропривода технологических установок и комплексов.

Технический результат изобретения достигается тем, что в устройстве компенсации высших гармоник и коррекции коэффициента мощности сети, содержащем инвертор, накопительный конденсатор, выходной сглаживающий пассивный фильтр и контроллер системы управления, контроллер системы управления снабжен датчиком тока фильтра, датчиком тока сети, датчиком напряжения, формирователем импульсов на основе релейных регуляторов с изменяемой шириной гистерезиса, фазовыми преобразователями тока и напряжения, блоком фазовой синхронизации, регулятором напряжения накопительного конденсатора, причем вход датчика тока сети соединен с зажимами питающей сети, вход датчика тока фильтра соединен с зажимами линии, питающей выходной сглаживающий пассивный фильтр и инвертор, вход датчика напряжения соединен с зажимами питающей сети, выход регулятора напряжения накопительного конденсатора соединен с входами драйверов управления силовыми ключами инвертора, вход регулятора напряжения накопительного конденсатора соединен с зажимами накопительного конденсатора, выход датчика тока сети соединен с входом формирователя импульсов, выход датчика тока фильтра соединен с входом формирователя импульсов, выход датчика тока сети соединен с входом регулятора напряжения накопительного конденсатора, выход датчика напряжения соединен с входом фазового преобразователя напряжения, выход фазового преобразователя напряжения соединен с входом блока фазовой синхронизации, выход блока фазовой синхронизации соединен с входом фазового преобразователя тока, выход регулятора напряжения накопительного конденсатора соединен с входом фазового преобразователя тока, выход фазового преобразователя тока и выход регулятора напряжения накопительного конденсатора соединены с входом формирователя импульсов, выход которого соединен с входами драйверов управления силовыми ключами инвертора.

Предлагаемое устройство поясняется чертежами, где на фиг.1 показана структура устройства, на фиг.2 - формирование импульсов управления силовыми ключами инвертора релейным регулятором. На фиг.1: 1 - нелинейная нагрузка; 2 - инвертор; 3 - накопительный конденсатор; 4 - выходной пассивный фильтр; 5 - датчик напряжения; 6 - фазовый преобразователь напряжения; 7 - блок фазовой синхронизации; 8 - фазовый преобразователь тока; 9 - формирователь импульсов; 10 - датчик тока сети; 11 - регулятор напряжения накопительного конденсатора; 12 - датчик тока фильтра; 13 - контроллер системы управления. На фиг.2: iз - заданный ток фильтра; iф - фактический ток фильтра; Δi - ширина гистерезиса релейного регулятора; Ти - импульсы управления ключами инвертора по напряжению; Ti - импульсы управления ключами инвертора по току.

Устройство компенсации высших гармоник и коррекции коэффициента мощности сети работает следующим образом. К инвертору 2 подключен накопительный конденсатор 3, к выходу инвертора 2 подключается выходной пассивный фильтр 4. Контроллер системы управления 13 осуществляет регулирование напряжения накопительного конденсатора 3 и генерацию импульсов управления силовыми ключами инвертора 2. Контроллер системы управления 13 в свою очередь состоит из датчика напряжения 5, фазового преобразователя напряжения 6, блока фазовой синхронизации 7, фазового преобразователя тока 8, формирователя импульсов 9, датчика тока сети 10, регулятора напряжения накопительного конденсатора 11, датчика тока фильтра 12.

Вход датчика тока сети 10 соединен с зажимами питающей сети, вход датчика тока фильтра 12 соединен с зажимами линии, питающей выходной сглаживающий пассивный фильтр 4 и инвертор 2, вход датчика напряжения 5 соединен с зажимами питающей сети, выход регулятора напряжения накопительного конденсатора 11 соединен с входами драйверов управления силовыми ключами инвертора 2, вход регулятора напряжения накопительного конденсатора 11 соединен с зажимами накопительного конденсатора 3, выход датчика тока сети 10 соединен с входом формирователя импульсов 9, выход датчика тока фильтра 12 соединен с входом формирователя импульсов 9, выход датчика тока сети 10 соединен с входом регулятора напряжения накопительного конденсатора 11, выход датчика напряжения 5 соединен с входом фазового преобразователя напряжения 6, выход фазового преобразователя напряжения 6 соединен с входом блока фазовой синхронизации 7, выход блока фазовой синхронизации 7 соединен с входом фазового преобразователя тока 8, выход регулятора напряжения накопительного конденсатора 11 соединен с входом фазового преобразователя тока 8, выход фазового преобразователя тока 8 и выход регулятора напряжения накопительного конденсатора 11 соединены с входом формирователя импульсов 9, выход которого соединен с входами драйверов управления силовыми ключами инвертора 2.

Измерительные сигналы линейных напряжений искаженной сети от датчика напряжения 5 поступают на вход фазового преобразователя напряжения 6, обрабатывающего поступающие сигналы в соответствии со следующими выражениями:

где uab, ubc - измеренные линейные напряжения искаженной сети; uα, uβ - преобразованные линейные напряжения искаженной сети в системе координат αβ0. Фазовые преобразования позволяют определить угол φ между изображающим вектором искаженного напряжения сети и его проекцией на ось α. Характер изменения и величина угла φ содержит информацию об уровне искажения, присутствующих высших гармониках и фазовом сдвиге напряжения и тока компенсируемой сети. Сигналы uα, uβ от фазового преобразователя напряжения 6 поступают на вход блока фазовой синхронизации напряжения и тока сети 7, который выполняет подстройку направляющих косинусов и синусов угла φ так, чтобы полученная в результате этого величина φ' соответствовала синусоидальной форме кривых напряжения сети. Исходные направляющие косинусы и синусы определяются следующим образом:

Регулятор напряжения накопительного конденсатора 11 контролирует уровень напряжения накопительного конденсатора 3 у заданной величины и дает сигнал драйверам управления силовыми ключами инвертора 2 на его подзарядку, если фактическое напряжение ниже задания. Сравнивая заданную и фактическую величину напряжения накопительного конденсатора 3 с учетом сигнала о величине искаженного тока сети от датчика тока сети 10, регулятор напряжения накопительного конденсатора 11 формирует сигнал задания по току iз для инвертора 2. Сигнал задания по току iз подается на вход фазового преобразователя тока 8. Регулятор напряжения накопительного конденсатора 11, обладая высоким быстродействием, которое позволяет отрабатывать резкие изменения тока нелинейной нагрузки 1 длительностью от единиц до десятков микросекунд, обеспечивает запас величины напряжения конденсатора 3 в случае внезапного изменения режима работы нелинейной нагрузки 1, приводящего к увеличению потребляемого ей искаженного тока и, как следствие, к росту величины необходимого компенсационного тока. Регулятор напряжения накопительного конденсатора 11 имеет верхний и нижний пределы ограничения, не позволяющие устройству работать в режиме длительной перегрузки. Сигнал задания по току регулятора напряжения накопительного конденсатора 11 также подается на вход формирователя импульсов 9.

После обработки блоком фазовой синхронизации 7 скорректированные направляющие синусы cosφ' и косинусы sinφ', соответствующие синусоидальной форме кривых напряжений сети, умножаются на сигнал задания по току iз от регулятора напряжения накопительного конденсатора 11, согласно следующим формулам:

в результате чего получаются сигналы задания по току iзα и iзβ в системе координат αβ0, синфазного с напряжением сети. После этого сигналы iзα и iзβ поступают на вход фазового преобразователя тока 8.

Сигналы iзα и iзβ после обработки фазовым преобразователем тока 8 в соответствии со следующими выражениями:

поступают на вход формирователя импульсов 9 в виде заданий iза, iзb, iзс по току инвертора 2.

По результатам сравнения заданного и фактического тока инвертора 2, и тока нелинейной нагрузки 1 на основе сигналов от датчика тока сети 10 и датчика тока фильтра 12 с учетом сигнала задания по току от регулятора напряжения накопительного конденсатора 11 для инвертора 2, формирователь импульсов 9, выполненный на основе релейных регуляторов, вырабатывает импульсы управления силовыми ключами инвертора 2. Формирователь импульсов 9 состоит из трех релейных регуляторов, по числу фаз питающей сети, каждый из которых формирует импульсы управления ключами инвертора 2 по току и напряжению. Импульсы поступают на управляющие электроды силовых ключей инвертора 2.

Релейные регуляторы формируют управляющие импульсы для силовых ключей инвертора 2 на основе сигналов ошибки, которые являются разницей между заданными токами iза, iзb, iзс, полученными в соответствии с (4), и фактическими генерируемыми инвертором 2 токами iфа, iфb, iфс (см. фиг.2), которые измеряются датчиком тока фильтра 12 с учетом сигнала задания по току от регулятора напряжения накопительного конденсатора 11 и измерительного сигнала тока нелинейной нагрузки 1, который поступает от датчика тока сети 10. Когда сигнал ошибки достигает верхнего предела (iз+Δi), первый транзистор k1 рассматриваемой ветви (см. фиг.1) инвертора 2 отключается, а второй транзистор k2 той же ветви включается, таким образом, происходит форсированное снижение тока. Когда сигнал ошибки достигает нижнего предела (iз-Δi) транзистор k1 рассматриваемой ветви инвертора 2 включается, а транзистор k2 той же ветви отключается, таким образом, происходит форсированное увеличение тока. Гистерезисные пределы сигнала ошибки (iз+Δi) и (iз-Δi) релейных регуляторов непосредственно определяют число пульсаций управляющих сигналов для ключей инвертора 2 при изменении заданного тока в зависимости от режима работы нелинейной нагрузки 1. Режим работы инвертора 2 с переменной частотой ШИМ реализуется путем изменения ширины гистерезиса Δi релейных регуляторов формирователя импульсов 9 в зависимости от характера изменения сигналов заданного и фактического компенсационного тока инвертора 2, сигнала задания по току от регулятора напряжения накопительного конденсатора 11, и измерительного сигнала тока нелинейной нагрузки 1. С увеличением частоты гистерезиса релейных регуляторов растет точность отработки задания по компенсационному току инвертора 2.

Использование других типов регуляторов для формирования импульсов управления ключами инвертора 2 в данном случае является неэффективным, так как компенсируемый спектр высших гармоник непрерывно меняется, следовательно, изменяется частотный спектр генерируемого компенсационного тока, формируемого режимом работы силовых ключей инвертора 2. Для отслеживания непрерывного изменения спектра генерируемого компенсационного тока необходимо обеспечить режим работы инвертора 2 с переменной частотой ШИМ. Изменение ширины и частоты гистерезиса релейных регуляторов позволяет задать пределы, внутри которых формируются импульсы управления, соответствующие режиму работы инвертора 2 с переменной частотой ШИМ и, как следствие, переменным частотным спектром генерируемого компенсационного тока. Заданные пределы регулирования гистерезиса релейных регуляторов должны соответствовать частотному диапазону изменения спектра подавляемых высших гармоник и настраиваются при установке устройства для компенсации нелинейной нагрузки 1 с известным генерируемым гармоническим спектром. Помимо этого, соответствующая настройка и регулирование ширины и частоты гистерезиса релейных регуляторов формирователя импульсов 9 позволяет обеспечить требуемую точность отработки задания по компенсационному току при сохранении уровня быстродействия, достаточного для отслеживания динамических изменений режима работы большинства типов нелинейной нагрузки, и режим работы инвертора 2 с переменной частотой ШИМ.

Таким образом, предлагаемое устройство на основе совокупного использования инвертора 2, накопительного конденсатора 3, выходного пассивного фильтра 4, контроллера 13, состоящего из датчика напряжения 5, фазового преобразователя напряжения 6, блока фазовой синхронизации 7, фазового преобразователя тока 8, датчика тока сети 10 и датчика тока фильтра 12, регулятора напряжения накопительного конденсатора 11, формирователя импульсов 9 на основе релейных регуляторов с изменяемой частотой и шириной гистерезиса и режима работы инвертора 2 с переменной частотой ШИМ позволяют повысить уровень качества электрической энергии, привести его в соответствие с нормами ГОСТ 13109-97 по искажению синусоидальности формы кривых тока и напряжения, повысить коэффициент мощности сети с более высоким быстродействием по сравнению с рассмотренными аналогами и прототипом.

Аппаратная реализация предлагаемого устройства может быть осуществлена с помощью существующих силовых электротехнических, электронных и микропроцессорных устройств при надлежащем выборе и настройке соответствующих параметров.

Устройство компенсации высших гармоник и коррекции коэффициента мощности сети, содержащее инвертор, накопительный конденсатор, выходной сглаживающий пассивный фильтр и контроллер системы управления, отличающееся тем, что контроллер системы управления снабжен датчиком тока фильтра, датчиком тока сети, датчиком напряжения, формирователем импульсов на основе релейных регуляторов с изменяемой шириной гистерезиса, фазовыми преобразователями тока и напряжения, блоком фазовой синхронизации, регулятором напряжения накопительного конденсатора, причем вход датчика тока сети соединен с зажимами питающей сети, вход датчика тока фильтра соединен с зажимами линии, питающей выходной сглаживающий пассивный фильтр и инвертор, вход датчика напряжения соединен с зажимами питающей сети, выход регулятора напряжения накопительного конденсатора соединен с входами драйверов управления силовыми ключами инвертора, вход регулятора напряжения накопительного конденсатора соединен с зажимами накопительного конденсатора, выход датчика тока сети соединен с входом формирователя импульсов, выход датчика тока фильтра соединен с входом формирователя импульсов, выход датчика тока сети соединен с входом регулятора напряжения накопительного конденсатора, выход датчика напряжения соединен с входом фазового преобразователя напряжения, выход фазового преобразователя напряжения соединен с входом блока фазовой синхронизации, выход блока фазовой синхронизации соединен с входом фазового преобразователя тока, выход регулятора напряжения накопительного конденсатора соединен с входом фазового преобразователя тока, выход фазового преобразователя тока и выход регулятора напряжения накопительного конденсатора соединены с входом формирователя импульсов, выход которого соединен с входами драйверов управления силовыми ключами инвертора.



 

Похожие патенты:

Изобретение относится к электротехнике. .

Изобретение относится к энергетике и может быть использовано для повышения качества и эффективности использования электроэнергии в n-фазных системах энергоснабжения.

Изобретение относится к распределению электрической энергии, контролю и безопасности. .

Изобретение относится к области электротехники и может быть использовано в электростанции. .

Изобретение относится к энергетике и может быть использовано для повышения эффективности использования электроэнергии в энергосистемах, с преобладающими активными нагрузками.

Изобретение относится к электротехнике и электроэнергетике, а именно к устройствам регулирования напряжения и передаваемой мощности в электрических распределительных сетях переменного тока

Изобретение относится к электротехнике и может быть использовано для компенсации мощной индуктивной нагрузки, например, при работе мощных электродвигателей, в сетях переменного тока одновременно с их работой на активную нагрузку

Изобретение относится к электротехнике и может быть использовано для повышения эффективности передачи электрической энергии путем снижения высших гармоник тока в трехфазных четырехпроводных электрических сетях

Изобретение относится к электротехнике и предназначено для повышения коэффициента мощности потребителей, в частности электроподвижного состава переменного тока с полупроводниковыми преобразователями

Изобретение относится к области электротехники и может быть использовано в серийно выпускаемых асинхронных двигателях с короткозамкнутым ротором, используемых в качестве генераторов энергетических установок для преобразования механической энергии в электрическую

Изобретение относится к области электротехники и может быть использовано в серийно выпускаемых асинхронных двигателях с короткозамкнутым ротором, используемых в качестве генераторов энергетических установок для преобразования механической энергии в электрическую
Наверх