Высокопроизводительный камерный смеситель для каталитических суспензий масла как реактор для деполимеризации и полимеризации углеводородсодержащих отходов в средний дистиллят в контуре циркуляции

Авторы патента:


Высокопроизводительный камерный смеситель для каталитических суспензий масла как реактор для деполимеризации и полимеризации углеводородсодержащих отходов в средний дистиллят в контуре циркуляции
Высокопроизводительный камерный смеситель для каталитических суспензий масла как реактор для деполимеризации и полимеризации углеводородсодержащих отходов в средний дистиллят в контуре циркуляции

 


Владельцы патента RU 2447131:

КОХ Кристиан (DE)

Изобретение относится к устройству и способу получения дизельного топлива из углеводородсодержащих отходов, при этом подаваемые вещества - сухие отходы, остаточное масло, нейтрализующее вещество и катализатор - связаны с системой (103) подачи через воронку-смеситель (109) и сборник (104), который граничит с питающей емкостью (102), причем питающая емкость (102) через каналы (110) контура циркуляции масла соединена со сборником (115), высокопроизводительный камерный волновой смеситель (101) на стороне всасывания имеет соединяющий его с питающей емкостью (102) трубопровод, а на напорной стороне соединен с желобом (113) испарителя (114), соединенного с дистилляционной колонной (118), в которой установлен конденсатор (119), который через трубопроводы (124) и (126) соединен с приемником (125) продукта - дизельного топлива, причем ниже испарителя (114) расположен сборник (115), который через регулировочный клапан (130) соединен с нагревательной камерой (132), имеющей на выходной стороне шнековый выпуск (133), соединенный с емкостью (134) для остатков. Технический результат - оптимизация систем подачи и выноса для высокопроизводительного камерного смесителя, в котором происходит разделение отходов на средний дистиллят и неорганические остатки. 2 н. и 5 з.п. ф-лы, 2 ил.

 

Настоящее изобретение относится к способу получения дизельного топлива из углеводородсодержащих отходов в контуре циркуляции масла с отделением твердой фазы и дистилляцией продукта для дизельного продукта.

В вышеуказанной патентной заявке входные и выходные компоненты рассматриваются только в общей форме. Целью дополнительной заявки является точное описание и рассмотрение этих компонентов на примере одного из вариантов осуществления. Эти уточнения будут возможны, так как высокопроизводительный камерный смеситель может создавать сильное разрежение и, таким образом, все проблемы ввода могут решаться на этой основе. Один из вариантов осуществления настоящего изобретения далее подробнее описывается с использованием чертежей, на которых представлено:

фиг.1 - схематическое изображение установки для осуществления соответствующего изобретению способа;

фиг.2 - схематическое изображение установки согласно фиг.1.

С помощью фиг.1 раскрывается прежде всего способ. Для свободной от засорения подачи на стороне всасывания у высокопроизводительного камерного смесителя 1 расположена питающая емкость 2, имеющая три входных отверстия. В верхней части питающей емкости 2 находится первое отверстие, сборник 4, соединенный через систему подачи 3, которая измельчает и дозирует, с питающей емкостью 2.

Подаваемые вещества, а именно сухие отходы 5, остаточное масло из установки или как отходы 6, находящиеся в воронке-смесителе 9 известь или сода как нейтрализующее вещество 7 и катализатор 8 попадают в эту систему подачи 3 через воронку-смеситель 9 и сборник 4. Как воронка-смеситель 9, так и сборник 4 оборудованы вибраторами, которые обеспечивают непрерывность притока.

Два других отверстия на питающей емкости 2 - это канал 10 подачи смеси масла с катализатором контура циркуляции из сборника 15 масла и канал 11 подачи сборной смеси масла с катализатором из сборника 15 масла, расположенный у выпуска 29 этого сборника 15 масла. Этим достигается то, что смесь масла с катализатором обеспечивает наличие остатков извести в контуре циркуляции.

На стороне нагнетания высокопроизводительного камерного смесителя 1 установлен напорный трубопровод 12. Он подает полученную в высокопроизводительном камерном смесителе 1 смесь парообразного продукта с маслом в испаритель 14. В испарителе имеется распределительный желоб 13, который разделяет поступающую масляно-паровую смесь с помощью листа с отверстиями, имеющегося в кольцевой форсунке с открытым концом, на большое число струй, которые смачивают стенку, и приводит к образованию максимально возможной поверхности жидкости в испарителе 14.

Этим достигается то, что почти весь продукт в виде пара отделяется от жидкости и может перемещаться вверх в дистилляционную колонну 18, и то, что практически продукт совсем не попадает в сборник 15 масла. Повторная перегонка уже полученного продукта в диапазоне температур кипения дизельного продукта уменьшила бы объем производимой продукции и снизила бы качество продукта.

Система подачи 3 через емкость 16 контроля уровня, которая показывает и регулирует уровень наполнения сборника 15 масла, включается и выключается или регулируется в отношении скорости. В нижней части емкости 16 контроля уровня установлен насос 17, который подает небольшое количество масла в систему подачи 3, чтобы исключить ее засорение.

На паровой стороне продукта в дистилляционной колонне 18 парообразный продукт путем фракционированной дистилляции очищается от принесенных им частиц масла и конденсируется в конденсаторе 19. Осаждающиеся при этом в процессе конденсации частицы воды задерживаются в конденсаторе 19 на входной стороне перегородкой из-за их большего удельного веса.

Оттуда водная фаза попадает в емкость 20 для измерения pH путем замены находящегося там с опускающейся вниз водой продукта. В емкости 20 для измерения pH находятся pH-датчик 23 и датчик 22 проводимости. При поступлении воды к датчику 22 проводимости определенное количество воды передается в емкость 21 технической воды, а из нее отводится в трубопровод сточной воды.

Более легкий продукт дизельное топливо или же мазут поступает над перегородкой в конденсаторе на выходную сторону в трубопровод продукта 24, причем парообразная фаза продукта поступает, как и продукт по трубопроводу 24, через трубопровод 26 в приемник 25 продукта. Небольшая часть продукта возвращается через трубопровод продукта 24, управляемый обратным клапаном 28, в дистилляционную колонну 18 на одну из верхних тарелок 27.

Управление при этом происходит так, что рециркуляцию в колонне определяет количество. Путем рециркуляции обеспечивается различное качество продукта для летнего дизельного топлива со средней температурой кипения 290°С, для зимнего дизельного топлива со средней температурой кипения 270°С и для керосина со средней температурой кипения 240°С. Охлаждение конденсатора происходит оборотной водой и оборотным охладителем 38 с насосом для оборотной воды.

За приемником продукта находится вакуумный насос 37, создающий во всей системе разрежение. Всасываемый газ добавляется в качестве всасываемого воздуха в электрогенераторе или очищается в системе каталитической очистки отработанного газа. Отсасываемые из установки газы представляют собой образующиеся из биологических веществ диоксиды углерода и, при определенных обстоятельствах, поступающие в небольшом количестве из-за недостаточной герметичности газы.

Таким образом, из установки не может выйти никакого горючего продукта. Вакуумный насос, к тому же, регулирует количество поступающих и выходящих нереактивных, неорганических остатков, которые выносятся в нижнем конце установки.

Нереактивные компоненты поступающего в установку материала и образующиеся с участием ионообменного катализатора, а также добавленной извести или соды соли поступают через регулировочный клапан 30 и насос 31 для горячего шлама в нагревательную камеру 32.

Она нагревается электричеством до температуры 550°С и имеет внутри термостойкую испарительную емкость с входом для шлама, идущий к испарителю обратный паровой трубопровод и шнековый выпуск 33 для нагретых неорганических веществ, которые поступают в емкость 34 для остатков. Их доля относительно количества поступившего вещества составляет в среднем от 1 до 3%.

Накопившиеся в емкости 34 для остатков вещества в последующем смешивают с водой из емкости 21 для технической воды. Оседающие в суспензии вещества - металл, стекло и керамика - отделяют и суспензию фильтруют. Остаток на фильтре представляет собой пригодный для повторного использования катализатор. Жидкость содержит образовавшиеся соли и отводится в трубопровод сточной воды.

В емкостях имеются разгрузочные и выравнивающие давление трубопроводы, например, питающая емкость 2 через вытяжную камеру 36 с обратным клапаном соединена с дистилляционной колонной. Кроме того, все теплопередающие части оснащены двойной изоляцией из алюминийоксидного волокна на их поверхности и изолирующего холста над ним. Снаружи расположен корпус из листового металла, который у турбины выполнен в виде замкнутой камеры, которая может выдерживать небольшое избыточное давление.

Изобретение раскрывается на примере одного из вариантов осуществления. Высокопроизводительный камерный смеситель 1 с электрической мощностью 200 кВт всасывает из питающей емкости 2 объемом 800 л поступившие из шестеренчатого измельчающего и дозирующего насоса Correaupumpe фирмы Correau Paris мощностью 37 кВт твердые вещества. Расположенный выше насоса сборник имеет вместимость 2 м3. Соединительный трубопровод марки DN50.

Соединительные трубопроводы между питающей емкостью 2 и сборником 15 масла относительно малы, чтобы обеспечить существенное смешивание питающей емкости в условиях высокой скорости вытекания масла и регулируемого разрежения. Они имеют диаметр 1,5 дюйма и клапаны, регулирующие разрежение в питающей емкости 2, а именно в зависимости от находящегося в системе подачи 3 материала. Разгрузочный трубопровод с обратным клапаном 36 имеет диаметр ¾ дюйма.

Испаритель 14 имеет вместимость 2 м3 и распределительный желоб 13 шириной 80 мм с тремя рядами отверстий диаметром 8 мм, причем во внутреннем и внешнем рядах отверстия имеют наклон от середины к стенам и во внутреннее пространство. Ниже расположенный сборник 15 масла имеет объем 1,5 м3 и емкость для контроля уровня имеет объем 100 л.

Дистилляционная колонна 18 имеет 15 колпачковых тарелок, каждая из которых выполнена с 52 колпачками диаметром 600 мм. Конденсатор 19 имеет объем 300 л. Система выпуска имеет регулировочный клапан 30 DN50 с насосом для горячего шлама, не имеющим деталей из синтетических материалов, и связана с нагревательной камерой 32, а именно нагревательной печью фирмы Nabertherm мощностью 15 кВт, и идущим к испарителю 14, изолированным и оборудованным конденсационными петлями паровым трубопроводом 35 диаметром 1,5 дюйма.

Шнековый выпуск 33 представляет собой шнек диаметром 200 мм с кожухом, располагающийся над входом в емкость 34 для остатков, имеющую объем 1 м3. Трубопровод к емкости 20 для измерения pH имеет диаметр 1,5 дюйма, а емкость для измерения pH имеет объем 0,5 м3 с датчиком 22 проводимости и pH-датчиком 23. Емкость 21 для технической воды имеет объем 1 м3.

Устройство для осуществления способа раскрывается с использованием фиг.2. На стороне всасывания высокопроизводительного камерного смесителя 101 расположена питающая емкость 102, которая имеет входные отверстия. В верхней части емкости находится первое входное отверстие, сборник 104, который через систему подачи 103, имеющую шестерни и дозирующее устройство, граничит с питающей емкостью 102.

Входные отверстия, сухие отходы 105, остаточное масло из установки, обозначаемые как отходы 106, известь или сода как нейтрализующее вещество 107 и катализатор 108 в воронке-смесителе 109 связаны с системой подачи 103 через воронку-смеситель 109 и сборник 104. Как воронка-смеситель 109, так и сборник 104 оборудованы вибраторами.

Два других отверстия в питающей емкости 102 являются каналом 110 подачи смеси масла с катализатором контура циркуляции из сборника 115 масла и каналом 111 подачи сборной смеси масла с катализатором из сборника 115 масла, расположенным на выпуске 129 этого сборника 115 масла.

На напорной стороне высокопроизводительного камерного смесителя 101 установлен напорный трубопровод 112. Он соединяет высокопроизводительный камерный смеситель 101 с испарителем 114. В испарителе имеется распределительный желоб 113, который на направленной внутрь стороне имеет перфорированные пластины и представляет собой кольцевую форсунку с открытым концом.

Система подачи 103 соединена с емкостью 116 для контроля уровня. В емкости имеется датчик уровня. В нижней части емкости 116 для контроля уровня установлен насос 117, соединенный трубопроводом с системой подачи 103.

Испаритель 114 соединен с дистилляционной колонной 118 с несколькими тарелками 127. В верхней части дистилляционной колонны 118 установлен конденсатор 119, у которого внутри имеется перегородка. Конденсатор на входной стороне имеет соединение с емкостью 120 для измерения pH. В емкости установлены датчик 122 проводимости, электронным способом соединенный с водовыпускным клапаном, и pH-датчик 123.

Со стороны конденсатора 119, расположенной напротив входной стороны, внизу и вверху установлены трубопроводы 124 и 126, которые соединены с приемником 125 продукта. В трубопроводе 124 продукта установлен обратный клапан 128, который соединен соединительным трубопроводом с дистилляционной колонной 118. Обратный клапан 128 соединен с электронным управляющим устройством, которое имеет установку на измерение температуры. У электронного устройства есть индикационные показатели летнее дизельное топливо, зимнее дизельное топливо и керосин.

Конденсатор 119 имеет на охлаждаемой стороне соединение с оборотным охладителем 138, имеющим насос для оборотной воды. За приемником 125 продукта находится вакуумный насос 137, который, таким образом, связан со всеми частями установки.

В нижней части сборника 115 масла установлен регулировочный клапан 130. Он соединен с насосом 131 для горячего шлама и нагревательной камерой 132. Нагревательная камера находится в нагреваемой электричеством печи и имеет наряду с входом от насоса горячего шлама 131 паровой трубопровод 135.

Этот трубопровод также изолирован, имеет конденсатные петли со спускными кранами и заканчивается в испарителе 114. Нагревательная камера 132 имеет на выходной стороне шнековый выпуск 133, который соединен с емкостью 134 для остатков.

За емкостью 134 для остатков установлена суспензионная камера, у которой есть соединяющий ее с емкостью 121 для технической воды трубопровод и два выхода. Выход на верхней стороне соединен с фильтр-прессом, пригодным для катализаторного шлама, а нижняя сторона связана с емкостью для пригодных к вторичной переработке отходов керамики, металла и газа.

Емкости оборудованы разгрузочными и выравнивающими давление трубопроводами, например питающая емкость 102, которая через вытяжную камеру 136 с обратным клапаном связана с дистилляционной колонной 118. Кроме того, все теплопередающие части оснащены двойной изоляцией из алюминийоксидного волокна на их поверхности и изолирующего холста над ним. Снаружи расположен корпус из листового металла, который у турбины выполнен в виде замкнутой камеры, которая может выдерживать небольшое избыточное давление.

Устройство раскрывается на примере одного из вариантов осуществления. Высокопроизводительный камерный смеситель 101 с электрической мощностью 200 кВт соединен трубопроводом с питающей емкостью 102 объемом 800 л. Эта емкость идущим вверх трубопроводом соединена с Correaupumpe фирмы Correau Paris, шестеренчатым измельчающим и дозирующим насосом мощностью 37 кВт. Расположенный выше насоса сборник имеет вместимость 2 м3. Соединительный трубопровод марки DN50.

Соединительные трубопроводы между питающей емкостью 102 и сборником 115 масла относительно малы, имеют диаметр 1,5 дюйма и клапаны, регулирующие разрежение в питающей емкости 102, а именно в зависимости от материала, находящегося на уровне заполнения системы 103 подачи. Разгрузочный трубопровод с обратным клапаном 136 имеет диаметр ¾ дюйма.

Испаритель 114 имеет вместимость 2 м3 и распределительный желоб 113 шириной 80 мм с тремя рядами отверстий диаметром 8 мм, причем во внутреннем и внешнем рядах отверстия имеют наклон от середины к стенам и во внутреннее пространство. Ниже расположенный сборник 115 масла имеет объем 1,5 м3 и емкость для контроля уровня имеет объем 100 л.

Дистилляционная колонна 118 имеет 15 колпачковых тарелок, каждая из которых выполнена с 52 колпачками диаметром 600 мм. Конденсатор 119 имеет объем 300 л. Система выпуска имеет регулировочный клапан 130 DN50 с насосом 131 для горячего шлама, не имеющим деталей из синтетических материалов, и связана с нагревательной камерой 132, а именно нагревательной печью фирмы Nabertherm мощностью 15 кВт, идущим к испарителю 114, изолированным и оборудованным конденсационными петлями паровым трубопроводом 135 диаметром 1,5 дюйма.

Шнековый выпуск 133 представляет собой шнек диаметром 200 мм с кожухом, располагающийся над входом в емкость 134 для остатков, имеющую объем 1 м3. Трубопровод к емкости 120 для измерения pH имеет диаметр 1,5 дюйма, а емкость 120 для измерения pH имеет объем 0,5 м3 с датчиком 122 проводимости и pH-датчиком 123. Емкость 121 для технической воды имеет объем 1 м3.

Список ссылочных позиций

1, 101 - высокопроизводительный камерный смеситель

2, 102 - питающая емкость

3, 103 - система подачи

4, 104 - сборник

5, 105 - сухие отходы

6, 106 - отходы

7, 107 - нейтрализующее вещество

8, 108 - катализатор

9, 109 - воронка-смеситель

10, 110 - канал подачи катализаторного масла контура циркуляции

11, 111- канал подачи сборного катализаторного масла

12, 112 - напорный трубопровод

13, 113 - распределительный желоб

14, 114 - испаритель

15, 115 - сборник масла

16, 116 - емкость для контроля уровня

17, 117 - насос

18, 118 - дистилляционная колонна

19, 119 - конденсатор

12, 120 - емкость для измерения pH

21, 121 - емкость для технической воды

22, 122 - датчик проводимости

23, 123 - pH-датчик

24, 124 - трубопровод продукта

25, 125 - приемник продукта

26, 126 - трубопровод

27, 127 - тарелка

28, 128 - обратный клапан

29, 129 - выпуск сборника масла

30, 130 - регулировочный клапан

31, 131- насос для горячего шлама

32, 132 - нагревательная камера

33, 133 - шнековый выпуск

34, 134 - емкость для остатков

35, 135 - паровой трубопровод

36, 136 - вытяжная камера с обратным клапаном

37, 137 - вакуумный насос

38, 138 - оборотный охладитель

1. Устройство для получения дизельного топлива из углеводородсодержащих отходов, отличающееся тем, что подаваемые вещества - сухие отходы, остаточное масло, нейтрализующее вещество и катализатор связаны с системой (103) подачи через воронку-смеситель (109) и сборник (104), который граничит с питающей емкостью (102), причем питающая емкость (102) через каналы (110) контура циркуляции масла соединена со сборником (115), высокопроизводительный камерный волновой смеситель (101) на стороне всасывания имеет соединяющий его с питающей емкостью (102) трубопровод, а на напорной стороне соединен с желобом (113) испарителя (114), соединенного с дистилляционной колонной (118), в которой установлен конденсатор (119), который через трубопроводы (124) и (126) соединен с приемником (125) продукта - дизельного топлива, причем ниже испарителя (114) расположен сборник (115), который через регулировочный клапан (130) соединен с нагревательной камерой (132), имеющей на выходной стороне шнековый выпуск (133), соединенный с емкостью (134) для остатков.

2. Устройство по п.1, отличающееся тем, что высокопроизводительный камерный волновой смеситель (101) имеет двойную изоляцию, а вокруг нее не проницаемую для масла внешнюю оболочку.

3. Устройство по п.1 или 2, отличающееся тем, что регулировочный клапан (130) соединен с нагревательной камерой (132) посредством насоса (131) для горячего шлама.

4. Устройство по п.3, отличающееся тем, что камера (132) нагревания нагревается электрической нагревательной печью, в которой достигается температура нагрева, по меньшей мере, 550°С, и которая имеет соединительные трубопроводы из камеры (132) нагревания к испарителю (114) и к емкости (134) для остатков через шнековый выпуск (133).

5. Способ получения дизельного топлива из углеводородсодержащих отходов в контуре циркуляции масла с отделением твердой фазы и дистилляцией продукта для дизельного продукта посредством устройства согласно любому из пп.1-4, отличающийся тем, что высокопроизводительный камерный смеситель со стороны всасывания соединяют с питающей емкостью, а на напорной стороне - с четырехструйным испарителем, причем питающая емкость на стороне подачи отходов имеет дозирующий и измельчающий подающий насос, а на стороне масла соединяется с двумя трубопроводами от сборника масла и от пространства под ним.

6. Способ по п.5, отличающийся тем, что на испарителе установлена дистилляционная колонна.

7. Способ по п.5, отличающийся тем, что сборник масла посредством насоса соединяют с камерой нагревания, посредством которой нагревают остаток масла до полного испарения углеводородов при температуре от 450 до 500°С.



 

Похожие патенты:

Изобретение относится к способам ожижения углей методом гидрогенизации для производства моторных топлив и химических продуктов (нафталин, тетралин-1-ол, -тетралин, изо-бутилфосфат, бензол, ксилолы и др.).

Изобретение относится к способу получения жидкофазных и газообразных продуктов из твердых горючих ископаемых (ТГИ), таких как уголь, сланцы, богхеды, сапропелиты, торф и другие органические вещества, для получения жидкого и газообразного топлива полуфункционального применения в качестве сырья для изготовления моторного и других видов топлива.

Изобретение относится к области переработки угля путем его ожижения в органических растворителях. .
Изобретение относится к производству жидкого топлива, которое может быть использовано в местных коммунально-бытовых топливных котлоагрегатах. .
Изобретение относится к химической технологии, а именно к сжижению углей и может быть использовано для получения синтетических моторных топлив. .

Изобретение относится к быстрой термической обработке вязкого нефтяного исходного сырья. .
Изобретение относится к способу переработки продуктов гидрогенизации угля и может быть использовано в нефтеперерабатывающей и коксохимической промышленности. .

Изобретение относится к вариантам способа гидроэкстракции керогена в сверхкритических условиях и к устройству для его осуществления. .
Изобретение относится к области переработки бурых углей путем их термического ожижения в органических растворителях. .

Изобретение относится к многоэтапному способу ожижения углеродосодержащего твердого топлива, причем такой способ включает следующие этапы: 1) один или несколько видов углеродосодержащего твердого топлива смешивают с мазутом до образования топливо-мазутной суспензии, после чего такую топливо-мазутную суспензию обезвоживают при помощи нагревания и далее частично ожижают путем гидрогенизации при низко-среднем давлении, в результате чего образуются легкие компоненты нефти и мазутные шламы; 2) легкие компоненты нефти, полученные на этапе 1), гидрорафинируют для получения очищенной нефти; 3) мазутные шламы, полученные на этапе 1), газифицируют для получения синтетического газа; 4) синтетический газ, полученный на этапе 3), при помощи обычного процесса синтеза Ф-Т преобразуют в нефть синтеза Ф-Т; 5) нефть синтеза Ф-Т, полученная на этапе 4), далее проходит гидрорафинацию и гидрокрекинг для получения очищенной нефти, которую далее фракционируют для получения высококачественных нефтяных продуктов, включая сжиженный нефтяной газ (СНГ), бензин, авиационный керосин, дизельное топливо и другие соответствующие химические продукты

Изобретение относится к способу непосредственного термохимического преобразования высокомолекулярных органических исходных продуктов в низкомолекулярные органические продукты, которые при комнатной температуре существуют в виде маловязких жидкостей и являются горючими, включающему следующие стадии: 1) подготовку в реакторе исходного продукта, по меньшей мере одного восстанавливающего газа и труднолетучих фракций продукта, 2) шоковое нагревание подготовленного исходного продукта до температуры реакции, 3) преобразование исходного продукта с использованием температуры, восстанавливающего действия газа и автокаталитического эффекта фракций продукта в парообразные продукты реакции и реакционный газ, 4) отделение реакционного газа при помощи конденсации с отводом конденсирующихся продуктов реакции, 5) кондиционирование отделенного реакционного газа при помощи выпуска по меньшей мере части газовой смеси, дополнительно при помощи подачи водорода и/или другого восстанавливающего вещества, в частности, в форме оксида углерода или тетралина, 6) возврат кондиционированного реакционного газа в реактор, при этом кондиционированный реакционный газ подвергают сжатию и предварительному нагреванию перед его возвратом в реактор

Изобретение относится к способу гидроконверсии тяжелого масла, выбираемого из сырой нефти, тяжелой сырой нефти, битумов из битуминозных песков, остатков перегонки, тяжелых фракций перегонки, деасфальтированных остатков перегонки, растительных масел, масел, полученных из угля и горючих сланцев, масел, полученных термическим разложением отходов, полимеров, биомассы, включающий направление тяжелого масла в зону гидроконверсии, осуществляемой в одном или более реакторов с псевдоожиженным слоем, в которые вводят водород, в присутствии подходящего гетерогенного нанесенного катализатора гидрирования, выполненного из носителя и активной фазы, состоящей из смеси сульфидов, один из которых получен из металла, принадлежащего группе VIB, а по меньшей мере еще один получен из металла, принадлежащего группе VIII, а также подходящего катализатора гидрирования, представляющего собой катализатор на основе сульфида Мо или W, нанодиспергированный в указанном тяжелом масле, и направление потока, поступающего из зоны гидроконверсии, в зону разделения, в которой отделенную жидкую фракцию, содержащую нанодисперсный катализатор, направляют рециклом в реактор(ы) с псевдоожиженным слоем

Изобретение относится к вариантам способа переработки угля и/или углеродсодержащих отходов в жидкое топливо, заключающийся в том, что в реактор для электроимпульсного измельчения подают уголь и/или углеродсодержащие отходы, органический растворитель при соотношении уголь и/или углеродсодержащие отходы : органический растворитель 1:2 и воду не менее 5 мас.% от угля и/или углеродсодержащих отходов, воздействуют на находящиеся в реакторе для электроимпульсного измельчения уголь и/или углеродсодержащие отходы, органический растворитель и воду электрическим высоковольтным разрядом, измельчают уголь и/или углеродсодержащие отходы в среде органического растворителя и воды, получая водоугольную органическую смесь, подают ее в реактор для электроимпульсного измельчения, повторно измельчают уголь и/или углеродсодержащие отходы в водоугольной органической смеси и выделяют ожиженное топливо из смеси с повторно измельченным углем или углеродсодержащими отходами, при этом водоугольную органическую смесь пропускают через приеморазделительный блок и золоотделитель. Используют различные виды электрического высоковольтного разряда: электрический высоковольтный разряд высокой частоты, электрический высоковольтный разряд прямоугольной формы, электрический высоковольтный разряд постоянного напряжения, электрический высоковольтный биполярный разряд, электрический высоковольтный биполярный разряд прямоугольной формы. В нескольких вариантах осуществления способа проводится дополнительно их гидродинамическая обработка. Технический результат - получение более высокой степени конверсии угля и/или углеродсодержащих отходов. 7 н.п. ф-лы, 2 ил.

Изобретение относится к способу переработки лигнина в жидкие продукты и касается, в частности, способа переработки гидролизного лигнина в жидкие углеводороды и может быть использовано для получения жидких углеводородов (в т.ч. кислородсодержащих) в ходе переработки отходов деревообрабатывающей промышленности, в т.ч. целлюлозы и др. Предложен способ переработки лигнина в жидкие углеводороды, заключающийся в том, что гидролизный лигнин механически смешивают с катализатором, представляющим собой каталитическую систему на основе высокодисперсного металла, выбранного из группы, включающей Pt, Pd, Ni, Fe, нанесенного на углеродный носитель, способный нагреваться до высоких температур под воздействием СВЧ излучения, при массовом соотношении лигнин:катализатор в диапазоне 1-5:1, с последующим нагреванием полученной реакционной смеси до температуры 250-340°C под воздействием СВЧ излучения мощностью до 10 Вт в токе водорода при объемной скорости его подачи 500-1000 ч-1. Технический результатом явилось то, что предлагаемая совокупность существенных признаков изобретения позволила проводить процесс при атмосферном давлении, длительность которого составляет не более 30 минут, и при этом, как следствие, повышается производительность процесса, а также удалось упростить технологию его осуществления за счет проведения процесса при атмосферном давлении и, в отличие от прототипа, не требуется обработка гидролизного лигнина водой или спиртами в суперкритических условиях (при давлении 60-90 атм). Следует отметить, что процесс переработки гидролизного лигнина в условиях низкой СВЧ-мощности и умеренных температур позволил достичь достаточно высокого выхода жидких углеводородов. 1 табл.

Способ производства биотоплива, который включает обработку органического вещества водным растворителем и по меньшей мере одним дополнительным катализатором, который выбран из группы, состоящей из: кислотного катализатора, катализатора конверсии водяного пара, катализатора на основе алюмосиликата, сульфидного катализатора и основного катализатора, где органическое вещество и водный растворитель предусматривают в форме суспензии, и указанную обработку производят в условиях непрерывного потока с минимальной, независящей от объема скоростью потока суспензии, большей чем скорость оседания твердого вещества в суспензии, при этом указанная обработка включает: нагревание и повышение давления до целевой температуры между примерно 250°С и примерно 400°С и до целевого давления между примерно 100 бар и примерно 300 бар для получения биотоплива; обработку при целевой температуре и целевом давлении в течение определенного промежутка времени; и охлаждение и понижение давления в суспензии, и при этом указанный по меньшей мере один дополнительный катализатор добавляют к органическому веществу после нагревания до указанной температуры и после повышения давления до указанного уровня, но до указанного понижения давления в суспензии, биотопливо представляет собой бионефть, а указанное органическое вещество представляет собой уголь или древесно-волокнистое вещество. 33 з.п. ф-лы, 7 ил., 2 пр., 13 табл.
Наверх