Способ получения защитных покрытий на магниевых сплавах

Изобретение относится к области гальванотехники, в частности к микродуговому оксидированию, и может найти применение в машиностроении, авиастроении, компьютерной технике и автомобилестроении. Способ включает электрохимическую обработку при плотности тока 5-25 А/дм2 и соотношении амплитуд анодного и катодного напряжения поляризации Ua/Uк, равном 2-4, в электролите, содержащем, г/л: силикат натрия 5-15, гидроокись щелочного металла 2-12, натрий ванадиевокислый 0,2-1,0, бензотриазол 0,01-0,05 и воду до 1 л. Технический результат: снижение энергоемкости процесса формирования покрытия, повышение коррозионной стойкости покрытий во всеклиматических условиях и повышение пожароустойчивости. 1 табл., 4 пр.

 

Изобретение относится к получению защитных покрытий на магниевых сплавах путем электрохимической обработки магниевых сплавов микродуговым оксидированием и может найти применение в машиностроении, авиастроении, компьютерной технике и автомобилестроении.

Известен способ получения защитных покрытий на магниевых сплавах, включающий двухстадийную электрохимическую обработку микродуговым оксидированием с последующим нанесением гальванического покрытия. Микродуговое оксидирование осуществляют при постоянном анодном токе плотностью 5-10 А/дм2 в растворе электролита, содержащем силикат натрия, фосфат натрия и гидроокись натрия, при следующем соотношении компонентов, г/л:

Силикат натрия 0,5
Фосфат натрия 2-5
Гидроокись натрия 2-5
Вода До 1 л

(заявка США №2009223829)

Нанесение гальванического покрытия ведут в растворе электролита, содержащем сульфат никеля.

Недостатками известного способа являются высокая трудоемкость и длительность процесса электрохимической обработки магниевых сплавов, использование соединений никеля в растворе электролита требует энергоемких очистительных сооружений.

Также известен способ получения защитных покрытий на магниевых, алюминиевых, титановых сплавах, включающий электрохимическую обработку переменным анодно-катодным током в щелочном электролите, электрохимическую обработку ведут при переменном токе плотностью 30-70 А/дм2 с длительностью импульсов и пауз 100-300 мкс, с соотношением амплитуд анодного и катодного тока 1,06-2, при температуре электролита 15-30°С (патент РФ №2046157).

Недостатками известного способа нанесения покрытий являются пониженные защитные свойства покрытий, высокая энергоемкость технологического процесса.

Наиболее близким аналогом, взятым за прототип, является способ получения защитных покрытий на магниевых сплавах, включающий электрохимическую обработку переменным током в растворе электролита, содержащем силикат натрия и фторид натрия, в котором электрохимическую обработку осуществляют переменным током, при увеличении значения напряжения от 0 до 250-300 В со скоростью 0,25-0,28 В/с и плотности тока 0,5-1,0 А/см2 при анодной поляризации, напряжении 25-30 В при катодной поляризации изделия и соотношении периодов анодной и катодной поляризации τak, равном 1, в течение 8-20 мин в электролите, имеющем следующий химический состав, г/л:

Силикат натрия 12-30
Фторид натрия 5-10
Вода До 1 л

(патент РФ 23 5 7016)

Недостатком известного способа является невозможность получения равномерного по толщине и пористости покрытия на деталях сложной конфигурации, при этом ухудшается адгезия лакокрасочных материалов к покрытию и снижаются его антикоррозионные свойства. Также при воздействии огнем покрытие на магниевом сплаве не обеспечивает защиту от воспламенения.

Технической задачей изобретения является разработка способа получения защитных покрытий на магниевых сплавах с повышенными коррозионной стойкостью и пожароустойчивостью.

Поставленная техническая задача достигается тем, что предложен способ получения защитных покрытий на магниевых сплавах, включающий электрохимическую обработку с переменным током поляризации в растворе электролита, содержащем силикат натрия и воду, в котором электрохимическую обработку осуществляют при плотности тока 5-25 А/дм2 и соотношении амплитуд анодного и катодного напряжения поляризации Uа/Uк, равном 2-4, в электролите, дополнительно содержащем гидроокись щелочного металла, натрий ванадиевокислый и бензолтриазол при следующем соотношении компонентов, г/л:

Силикат натрия 5-15
Гидроокись щелочного металла 2-12
Натрий ванадиевокислый 0,2-1
Бензотриазол 0,01-0,05
Вода До 1 л

Установленно, что введение в предлагаемый способ бензотриазола, образующего в процессе формирования покрытия комплексные соединения, позволяет за счет их ингибирующего действия повысить коррозионную стойкость. Проведение электрохимической обработки при заявленных соотношениях амплитуд анодного и катодного напряжения поляризации Uа/Uк, плотности тока в присутствии катионов ванадия в растворе электролита позволяет формировать композиционную гетерооксидную структуру покрытия, повышающую пожароустойчивостью. Введение гидроокиси щелочного металла, например гидроокиси калия и натрия, позволяет использовать ток меньшей плотности, что значительно снижает энергозатраты при осуществлении предлагаемого способа.

Примеры осуществления способа

Пример 1.

Электролит готовили путем последовательного растворения исходных компонентов при непрерывном перемешивании с помощью механической мешалки и выдерживали приготовленный раствор в течение 30 минут. Предварительно обработанный образец из магниевого сплава МА20 размером 25×15×2 мм (анод), помещали в приготовленный электролит, содержащий, г/л: силикат натрия (Na2SiO3·5H2O) - 15; гидроокись натрия (NaOH) - 12; натрий ванадиевокислый (NaO3V·2H2O) - 1; бензотриазол (С6H5N3) - 0,05.

Охлаждение электролита, в процессе нанесения покрытия осуществляли с помощью теплообменника, выполненного в виде змеевика из стекла и охлаждаемого проточной водой.

В качестве катода использовали пластину из нержавеющей стали, площадь которой на порядок больше обрабатываемого образца.

Образец подвергали электрохимической обработке при плотности тока 5А/дм2, соотношении анодного и катодного напряжения поляризации Ua/Uк, равном 4, промывали и подвергали сушке. Исследование защитных свойств полученного покрытия на магниевом сплаве МА20 проводили в камере солевого тумана Votsch VSC-1000 по ГОСТ9.905, ГОСТ9.308. Толщину покрытия измеряли с помощью переносного электронного толщинометра MiniTest 2100.

Для исследования воспламеняемости металлические образцы с покрытиями подвергали воздействию пламени горелки Бунзена с соплом, имеющим номинальный внутренний диаметр 9,5 мм и высоту пламени 38 мм, температура пламени в его центре составляла 800-850°С (Авиационные правила часть 25. Нормы летной годности самолетов транспортной категории. Международный Авиационный комитет. 2004 г.).

Примеры 2, 3 проводили аналогично примеру 1.

Пример 4 проводили по способу-прототипу. Электролит готовили путем последовательного растворения исходных компонентов при непрерывном перемешивании с помощью механической мешалки и выдерживали приготовленный раствор в течение 30 минут. Предварительно обработанный образец из магниевого сплава МА14 размером 30×5×1 мм (анод), помещали в приготовленный электролит, содержащий, г/л: силикат натрия (Na2SiO3·5H2O) - 30; фторид натрия (NaF) - 10.

Охлаждение электролита, в процессе нанесения покрытия, осуществляли с помощью теплообменника, выполненного в виде змеевика из стекла и охлаждаемого проточной водой.

В качестве катода использовали пластину из нержавеющей стали, площадь которого на порядок больше обрабатываемого образца.

Образец подвергали электрохимической обработке переменным током, при увеличении значения напряжения от 0 до 250-300 В со скоростью 0,25-0,28 В/с и плотности тока 0,78 А/см2=78 А/дм2 при анодной поляризации, напряжении 25-30 В при катодной поляризации изделия и соотношении периодов анодной и катодной поляризации τаk, равном 1, в течение 15 мин.

Иследование толщины покрытия, пожароустойчивости и коррозионной стойкости проводились аналогично примеру 1.

Состав электролитов, параметры процесса и свойства полученных покрытий приведены в таблице.

Из анализа таблицы видно, что коррозионная стойкость покрытия по предлагаемому способу в 1,8-2 раза выше, чем покрытия по способу-прототипу. Пожароустойчивость покрытия по предлагаемому способу в 1,7 раз выше, чем покрытия по способу-прототипу.

Применение предлагаемого способа позволит использовать изделия из деформируемых и литейных магниевых сплавов широкой номенклатуры во всеклиматических условиях, снизит энергоемкость процесса формирования покрытия.

Способ получения защитных покрытий на магниевых сплавах, включающий электрохимическую обработку с переменным током поляризации в растворе электролита, содержащем силикат натрия и воду, отличающийся тем, что электрохимическую обработку осуществляют при плотности тока 5-25 А/дм2 и соотношении амплитуд анодного и катодного напряжения поляризации Ua/Uк, равном 2-4, в электролите, дополнительно содержащем гидроокись щелочного металла, натрий ванадиевокислый и бензотриазол при следующем соотношении компонентов, г/л:

силикат натрия 5-15
гидроокись щелочного металла 2-12
натрий ванадиевокислый 0,2-1
бензотриазол 0,01-0,05
вода до 1 л


 

Похожие патенты:

Изобретение относится к электролитическим способам нанесения антикоррозионных биосовместимых покрытий на сплавы магния, применяемые в имплантационной хирургии при изготовлении имплантатов, эксплуатируемых в коррозионно-активной среде, преимущественно содержащей хлорид-ионы, и может быть использовано при изготовлении имплантатов различного функционального назначения, в частности биодеградируемых.

Изобретение относится к области металлургии, а именно к изделиям из магниевых сплавов со сформированным антикоррозионным или лакокрасочным покрытием и способам их изготовления.

Изобретение относится к области гальванотехники и предназначено для анодирования металлических поверхностей, предпочтительно поверхностей магния, сплавов магния, алюминия и сплавов алюминия.
Изобретение относится к электрохимической обработке металлических поверхностей, а именно к способу плазменно-электролитического нанесения защитных покрытий на изделия из сплавов магния.
Изобретение относится к электрохимической обработке магния и сплавов на его основе и к получению термостойких защитных покрытий от различных видов коррозии на поверхности этих материалов.

Изобретение относится к способу выполнения антикоррозионного покрытия на сплаве Mg, на изготовленных из этого сплава деталях и бытовых электрических приборах, аудиосистемах и т.д.; использования материалов с таким антикоррозионным покрытием; а более конкретно, оно касается деталей из сплава Mg, имеющих высокую коррозионную стойкость, приобретаемую за счет обработки путем химического превращения, безвредной для окружающей среды; использования этих деталей; раствора для обработки путем химического превращения и способа формирования антикоррозионного покрытия.

Изобретение относится к оксидированию металлов, преимущественно магния, и может быть использовано в . .

Изобретение относится к технологии нанесения защитных покрытий на сплавы магния, изделия из которых находят применение в авиа- и автомобилестроении, электротехнике и радиотехнике, компьютерной, космической и оборонной технике. Способ включает плазменно-электролитическое оксидирование (ПЭО) поверхности сплава в водном электролите, содержащем силикат натрия и фторид натрия, в течение 10-15 мин в биполярном режиме с одинаковой продолжительностью периодов анодной и катодной поляризации, при эффективной плотности тока 0,5-1,0 А/см2 и равномерном увеличении напряжения от 0 до 250-270 В в течение периода анодной поляризации сплава и постоянном значении напряжения - 25-30 В в течение периода его катодной поляризации. Сплав с нанесенным ПЭО-покрытием погружают при комнатной температуре на 100-120 мин в раствор 8-оксихинолина C9H7NO, полученный путем его растворения в воде при нагревании до 90°C с добавлением NaOH до значения pH 12,0-12,5. Полученное покрытие подвергают термической обработке при 140-150°C в течение 100-120 мин. Технический результат - снижение скорости коррозии получаемых защитных покрытий и увеличение срока их службы в атмосфере с высокой влажностью, содержащей хлорид-ионы, за счет способности покрытий к самовосстановлению. 1 з.п. ф-лы, 3 пр.

Изобретение относится к области гальванотехники и может быть использовано в авиа- и автомобилестроении, электротехнике и радиотехнике, компьютерной, космической и оборонной технике. Способ включает плазменно-электролитическое оксидирование (ПЭО) поверхности сплава в силикатно-фторидном электролите в биполярном режиме в два этапа. В течение первых 200-240 с в ходе анодной поляризации поверхности сплава процесс ведут гальваностатически при плотности тока 0,5-0,7 А/см2 до напряжения на аноде 250-270 В, а в ходе катодной поляризации потенциостатически при напряжении на катоде -(30-40) В. Затем в течение 600-700 с оксидирование продолжают при анодном напряжении, уменьшающемся до 200-210 В, и катодном напряжении - до -(8-10) В. На поверхность сформированной подложки наносят слой фторполимера путем окунания в раствор теломеров тетрафторэтилена в ацетоне с последующей сушкой и термообработкой покрытия при 250-275°С в течение не менее одного часа. Операцию нанесения фторполимера повторяют 2-3 раза. Технический результат - повышение технологичности способа при одновременном увеличении срока службы и улучшении коррозионной стойкости, антифрикционных и гидрофобных свойств получаемых покрытий. 2 з.п. ф-лы, 2 ил., 3 табл., 4 пр.

Изобретение относится к получению защитных покрытий на металлических поверхностях, конкретно, к способу нанесения антикоррозионных износостойких покрытий на сплавы магния, которые являются перспективными конструкционными материалами для машиностроения, автомобилестроения, аэрокосмической техники, электро- и радиотехники, для производства компьютерной аппаратуры и применения в других отраслях промышленности. Способ включает формирование микро-нано-пористого керамикоподобного слоя путем плазменно-электролитического оксидирования (ПЭО) поверхности сплава в электролите, содержащем силикат натрия и фторид натрия, в биполярном режиме, при этом процесс ведут потенциодинамически при напряжении, возрастающем со скоростью 16-18 В/мин до 260-270 В, а ходе анодной поляризации поверхности и потенциостатически при напряжении -(30-50) В в ходе ее катодной поляризации, с последующим нанесением на сформированный пористый слой полимерной пленки путем погружения на 10-15 с в раствор поливинилиденфторида -(C2H2F2)-n в N-метил-2-пирролидоне (C5H9NO)n с термической обработкой нанесенного полимера при 70-110°С в течение 3-5 ч. Технический результат - повышение прочностных свойств, устойчивости к абразивному износу и улучшение адгезии получаемых покрытий при одновременном повышении экологической безопасности способа и его упрощении. 2 з.п. ф-лы, 2 табл., 3 пр., 5 ил.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и аэрокосмической технике. Способ включает три этапа: на первом этапе на подложке формируют первичное покрытие толщиной не менее 15 мкм, которое получают МДО подложки в водном электролите, содержащем от 10 до 40 г/л метасиликатов щелочных металлов, от 2 до 10 г/л фторидов щелочных металлов и от 3 до 15 г/л гидроксидов щелочных металлов, при использовании импульсного тока с амплитудой 400-450 В, длительностью импульсов 250-350 мкс, на втором этапе осуществляют первое химическое стравливание покрытия в водном растворе, содержащем от 0,5 до 1,5 моль/л фосфорной кислоты, от 0,5 до 1,5 моль/л фтороводорода или фторида, затем формируют на подложке вторичное покрытие с использованием электролита и режима МДО первого этапа, после чего осуществляют второе химическое стравливание покрытия в водном растворе первого стравливания, а на третьем этапе используют электролит и режим МДО первого этапа с формированием на подложке финишного наноструктурного неметаллического неорганического защитного покрытия. Техническим результатом является повышение прочности сцепления покрытия с основой, коррозионной стойкости и устойчивости к воздействию внешних факторов, в первую очередь к внешним механическим воздействиям. 3 з.п. ф-лы, 2 ил., 1 табл.
Наверх