Способ лазерно-плазменного напыления покрытий


 


Владельцы патента RU 2449048:

ГОУ ВПО "Ковровская государственная технологическая академия имени В.А. Дегтярева" (RU)

Изобретение относится к области газотермического нанесения покрытий, а именно лазерно-плазменному напылению, и может быть использовано для поверхностной обработки деталей в машиностроении, в том числе специальном, авиастроении, ракетостроении, энергетике. Сущность способа заключается в следующем. Согласно способу плазмотроном создают плазменный поток, направленный на напыляемую поверхность, подают в него частицы напыляемого порошка, а на выход из сопла плазмотрона перпендикулярно плазменному потоку подают модулированное лазерное излучение и фокусируют его на противоположной от источника лазерного излучения стороне пламенного потока. При этом лазерное излучение подают перед подачей частиц напыляемого порошка и с интенсивностью, не менее пороговой, при которой происходит оптический пробой. Технический результат - повышение прочности сцепления покрытия с подложкой. 1 ил., 1 табл.

 

Изобретение относится к области газотермического нанесения покрытий и может быть использовано для поверхностной обработки деталей в машиностроении, в том числе специальном, авиастроении, ракетостроении, энергетике и др.

Известен способ плазменного напыления (Пузряков А.Ф. Теоретические основы технологии плазменного напыления - М.: МГТУ имени Н.Э. Баумана, 2003. - 358 с.), включающий создание плазменного потока, подачу частиц напыляемого порошка внутри плазмотрона, и напылении разогретого порошка на поверхность обрабатываемой детали.

Недостатком такого способа является неоднородный нагрев частиц напыляемого порошка, который приводит к попаданию на поверхность обрабатываемой детали частиц, не достигших температуры плавления, и получение покрытия с низкими эксплуатационными характеристиками из-за низкой прочности вследствие отслаивания и высокой пористости.

Наиболее близким по технической сущности к предлагаемому изобретению является способ лазерно-плазменного напыления покрытий (см. RU 75391 U1, 10.08.2008 /D1/), в котором плазмотроном создают плазменный поток, направленный на напыляемую поверхность, и подают в него частицы напыляемого порошка, при этом на выход из сопла плазмотрона перпендикулярно плазменному потоку подают модулированное лазерное излучение и фокусируют его на противоположной от источника лазерного излучения стороне плазменного потока.

Недостатками данного способа являются низкая прочность сцепления покрытия с подложкой, поскольку подводимая энергия лазерного излучения поглощается плазменным потоком лишь на 15-20%, что и приводит к недостаточному нагреву частиц напыляемого материала.

Задачей предлагаемого изобретения является повышение прочности сцепления покрытий с подложкой.

Это достигается тем, что в способе, заключающемся в создании плазмотроном плазменного потока, направленного на напыляемую поверхность, подаче на выход из сопла плазмотрона перпендикулярно плазменному потоку модулированного лазерного излучения и фокусировке его на противоположной от источника лазерного излучения стороне плазменного потока, лазерное излучение подают перед подачей частиц напыляемого порошка. Интенсивность лазерного излучения при этом должна быть не менее пороговой, при которой происходит оптический пробой.

Использование модулированного лазерного излучения с интенсивностью не менее пороговой позволяет подводить энергию высокой плотности мощности, что дает возможность образования области оптического пробоя, в которой поглощается до 90-95% энергии лазерного излучения.

Ведение лазерного излучения перпендикулярно плазменному потоку, после его выхода из сопла плазмотрона обеспечивает повышение температуры плазменного потока за счет распространения волны поглощения в области оптического пробоя навстречу лазерному лучу, возникающей при фокусировке лазерного излучения на противоположной от источника лазерного излучения стороне плазменного потока. Это дает равномерный нагрев плазменного потока по всему поперечному сечению, а не только в ядре плазмы, что повышает температуру плазменного потока в 2-3 раза. Подача частиц напыляемого материала после введения лазерного излучения в плазменный поток, то есть после образования равномерно нагретой области оптического пробоя, обеспечивает их нагрев значительно сильнее, что в конечном итоге приводит к повышению прочности сцепления покрытия с подложкой в 2 раза по сравнению с прототипом.

На рисунке представлена принципиальная схема реализации предлагаемого способа.

Схема включает внешний блок управления установки плазменного напыления 1, блок электропитания установки плазменного напыления 2, плазмотрон 3, источник модулированного лазерного излучения 4, поворотное устройство комбинированного узла для лазерно-плазменного напыления 5, кронштейн 6, связанный с системой фокусировки лазерного излучения 7, переходник 8, предметный стол 9, систему датчиков 10 и компьютер 11.

Способ реализуется следующим образом: создается плазменный поток, направленный на напыляемую поверхность, в который после выхода из сопла плазмотрона перпендикулярно подается модулированное лазерное излучение с интенсивностью, не менее пороговой. Лазерное излучение фокусируется системой фокусировки 7 на противоположной от источника лазерного излучения стороне плазменного потока. Температура плазменного потока повышается, что фиксируется с помощью датчиков 10, и после этого в разогретый плазменный поток подаются частицы напыляемого материала. Достаточность нагрева частиц напыляемого порошка в плазменном потоке оценивается с помощью программного обеспечения, установленного на компьютере 11.

Пример.

Предлагаемым способом наносили керамическое покрытие оксида алюминия Аl2O3 на предварительно напыленный металлический слой на основе никель-хромового сплава. Для формирования плазменного потока и переноса с его помощью частиц порошка напыляемого покрытия использовали установку для плазменной обработки «Киев - 7», обеспечивающую мощность плазмотрона 60 кВт. Источник модулированного лазерного излучения включал в себя излучатель со средней мощностью 50 Вт, источник питания типа ЛТИ - 130 Вт, систему транспортировки, наведения и фокусировки, параметры лазерного излучения - длительность импульсов 100 нc, плотность мощности 2,5 ГВт/см2 и длина волны 1,06 мкм. Расстояние до напыляемой поверхности составило 150 мм, напряжение на плазмотроне - 300 В, ток - 200 А. В качестве плазмообразующего газа использовалась смесь углеродосодержащих газов с давлением 3 атм. Дисперсность частиц напыляемого порошка составила 40-60 мкм.

Для получения сравнительных данных проводилось нанесение покрытий по известному способу. Результаты сведены в таблицу.

Известный способ Лазерно-плазменное напыление
Прочность сцепления, МПа 30-40 60-80

Способ лазерно-плазменного напыления, в котором плазмотроном создают плазменный поток, направленный на напыляемую поверхность, подают в него частицы напыляемого порошка, подают на выход из сопла плазмотрона перпендикулярно плазменному потоку модулированное лазерное излучение и фокусируют его на противоположной от источника лазерного излучения стороне плазменного потока, отличающийся тем, что лазерное излучение подают перед подачей частиц напыляемого порошка и с интенсивностью не менее пороговой, при которой происходит оптический пробой.



 

Похожие патенты:

Изобретение относится к устройству лазерной наплавки и легирования материалов и может быть использовано при наплавке различных материалов лазерным излучением и в лазерной стереолитографии с применением порошковых материалов.

Изобретение относится к способам изготовления деталей подшипников качения, имеющих градиент содержания углерода по меньшей мере в зоне приповерхностного слоя. .

Изобретение относится к способам нанесения покрытий из наночастиц и может быть использовано в плазмометаллургии, плазмохимии и машиностроительной промышленности.

Изобретение относится к способам формирования напылением аморфного пленочного покрытия. .

Изобретение относится к нанесению покрытий, которые содержат небольшие количества газообразных примесей, в частности кислорода, и предназначены для защиты от коррозии, от износа или для применения в системах управления температурой.
Изобретение относится к технологии получения покрытий на поверхности деталей, в частности к способам нанесения защитных покрытий из порошковых материалов газотермическим напылением на поверхности деталей, и может быть использовано в авиадвигателестроении, энергетике, машиностроении при изготовлении и ремонте деталей, например корпусных деталей, валов, рабочих и направляющих лопаток газовых турбин.
Изобретение относится к получению износостойких покрытий методом детонационного напыления. .
Изобретение относится к нанесению покрытий, а именно к способу металлизации детонационным напылением детали из полимерного материала, и может быть использовано для металлизации термопластов, в особенности инертных пластиков, таких как фторопласт, полиэтилен, полипропилен.

Изобретение относится к оптимизированному твердому покрытию и заготовке, в частности режущему инструменту с нанесенным на него твердым покрытием, а также способу получения заготовки с покрытием, способу резания и способу получения обработанной заготовки

Изобретение относится к оптическим технологиям, в частности к лазерным методам формирования на подложках структурных образований нано- и микроразмеров для нано- и микромеханики и микроэлектроники

Изобретение относится к способам электровзрывного нанесения покрытий на медные контактные поверхности
Изобретение относится к области металлургии, а именно к способам подготовки поверхности заготовок для горячей деформации, и может быть использовано для обеспечения защиты поверхности заготовок из химически активных тугоплавких металлов IV и V групп или сплавов на их основе

Изобретение относится к технологии газотермического напыления, а именно к плазменным способам напыления износостойких покрытий на детали, работающие при одновременном воздействии износа и коррозионных сред, и может быть использовано в машиностроении, металлургии, энергетике и других сферах производства

Изобретение относится к плазменной обработке поверхности частиц с помощью диэлектрических барьерных разрядов

Изобретение относится к реагирующему с водой Al композитному материалу, к реагирующей с водой Al пленке, к способу получения данной Al пленки и составляющему элементу из реагирующей с водой Al пленки на основе пленкообразующей камеры для получения пленки из драгоценных или редких металлов

Изобретение относится к способу получения реагирующей с водой алюминиевой пленки и составляющего элемента для пленкообразующей камеры, который покрыт этой алюминиевой пленкой
Наверх