Способ нанесения износостойкого покрытия на титановые сплавы


 


Владельцы патента RU 2449053:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU)

Изобретение относится к нанесению износостойких покрытий и может найти применение в авиастроении и машиностроении. Проводят диффузионную электрохимическую обработку титанового сплава в электролите следующего химического состава, г/л: ортофосфорная кислота - 1100-1200, сегнетова соль или молочная кислота - 20-50, вода - до 1 л. Осаждают карбид хрома из паровой фазы бисаренхроморганического соединения. Диффузионную электрохимическую обработку проводят в течение 1-2 ч при плотности тока 5-10 А/дм2 и температуре 50-60°С. Перед осаждением карбида хрома из паровой фазы бисаренхроморганического соединения в соединение вводят 2-5 мас.% дибензилового эфира. Процесс осаждения карбида хрома из паровой фазы бисаренхроморганического соединения проводят в вакууме или токе инертного газа при давлении ≤100 Па. Увеличивается ресурс и надежность деталей из титановых сплавов, работающих в условиях воздействия агрессивных сред, износа и высоких температур. 3 з.п. ф-лы, 1 табл., 4 пр.

 

Изобретение относится к нанесению износостойких покрытий для защиты поверхностей титановых сплавов от воздействия агрессивных сред, износа и высоких температур и может найти применение в авиастроении, машиностроении.

Получению качественных износостойких покрытий на изделиях из титановых сплавов препятствует их способность к внедрению газа в поверхностные слои, а также наличие образующейся на воздухе при нормальных условиях оксидной пленки TiO2.

Известен способ нанесения износостойкого покрытия на нагретую поверхность изделий путем термического разложения в вакууме паров бисэтилбензолхрома, в котором нанесение покрытия ведут в неизотермическом режиме при температурах 300-350°С на начальной стадии процесса с последующим повышением ее до 500-600°С (а.с. СССР №638634).

Недостатком известного способа является неудовлетворительная адгезионная прочность покрытия на титановых сплавах.

Известен способ получения износостойкого хромового покрытия на изделиях из титановых сплавов в гальванической ванне, в котором на изделие предварительно наносят подслой никеля с последующей термической обработкой (патент ФРГ №3716937).

Недостатком известного способа является необходимость применения токсичных соединений шестивалентного хрома (1-й класс опасности по ГОСТ 12.1.007-76).

Известен способ нанесения двухслойного износостойкого покрытия на титановые сплавы, в котором сначала наносят подслой из меди толщиной 0,3-10 мкм, проводят вакуумный отжиг при температуре 450-500°С и глубине вакуума 10-3-10-2 мм рт.ст., затем в качестве износостойкого слоя наносят карбид хрома пиролизом бисаренхроморганических соединений (а.с. СССР 1776699).

Недостатком известного способа являются низкие адгезионные свойства покрытия и/или подслоя.

Известен способ нанесения износостойкого покрытия на изделия из титановых сплавов, в котором создают шероховатость на поверхности изделия путем пескоструйной обработки, в качестве промежуточного слоя на основу наносят слой никеля путем катодного распыления в вакуумной камере, после чего проводят промежуточную стадию очистки, активацию путем погружения в цианидсодержащий раствор и последующее нанесение износостойкого покрытия из электролита, содержащего серебро или металл, выбираемый из группы, включающей хром, и/или никель, и/или кобальт с/или без керамических частиц SiC, Cr2C3, Al2О3, Cr2O3 (патент РФ №2068032).

Недостатком известного способа является необходимость применения вредных соединений цианида и низкие адгезионные свойства покрытия и/или подслоя.

Известен способ нанесения на основу из алюминия или его сплава композиционного покрытия, содержащего карбид хрома, в котором между основой и слоем из пиролитического карбида хрома размещен промежуточный слой из оксидокерамики (патент РФ №2175686).

Недостатком известного способа является невозможность его использования для титановых сплавов.

Наиболее близким аналогом, принятым за прототип, является способ нанесения двухслойного износостойкого покрытия на титановые сплавы, включающий осаждение подслоя никеля или его сплавов толщиной 0,1-10 мкм и последующее осаждение износостойкого слоя карбида хрома из паровой фазы бисаренхроморганических соединений (патент РФ №2251589).

Недостатком способа-прототипа является недостаточно высокая адгезионная прочность покрытия.

Технической задачей предлагаемого изобретения является разработка способа нанесения износостойкого покрытия на титановые сплавы с высокой адгезионной прочностью.

Для решения поставленной задачи предложен способ нанесения износостойкого покрытия на титановые сплавы путем осаждения карбида хрома из паровой фазы бисаренхроморганического соединения, в котором перед осаждением карбида хрома проводят диффузионную электрохимическую обработку титанового сплава в электролите следующего химического состава, г/л:

ортофосфорная кислота 1100-1200
сегнетова соль или молочная кислота 20-50
вода до 1 л

Диффузионную электрохимическую обработку проводят в течение 1-2 ч при плотности тока 5-10 А/дм2 и температуре 50-60°C.

Перед осаждением карбида хрома из паровой фазы бисаренхроморганического соединения в соединение может быть введено 2-5 мас.% дибензилового эфира.

Процесс осаждения карбида хрома из паровой фазы бисаренхроморганического соединения проводят в вакууме или токе инертного газа при давлении ≤100 Па.

Проведение диффузионной электрохимической обработки в электролите с заявляемым содержанием и соотношением компонентов перед осаждением карбида хрома из паровой фазы бисаренхроморганического соединения позволяет значительно повысить адгезионные свойства наносимого на титановые сплавы износостойкого покрытия без нанесения подслоя.

Введение дибензилового эфира в бисаренхроморганическое соединение стабилизирует и ускоряет процесс осаждения, а также изменяет внутреннюю структуру карбида хрома, что приводит к увеличению максимальной толщины покрытия и повышению качества его поверхности.

Примеры осуществления

Пример 1

В качестве образцов использовали листовые детали из титанового сплава ВТ22. Диффузионную электрохимическую обработку проводили в течение 1 ч при плотности тока 8 А/дм2 и температуре 50°С в электролите следующего состава, г/л: ортофосфорная кислота - 1156, сегнетова соль - 20, вода до 1 л. Покрытие осаждали в вакууме из бисаренхроморганического соединения «Бархос» (ТУ 6-01-1149-78) с добавкой 2% дибензилового эфира. Режимы обработки и состав электролита приведены в таблице.

Пример 2

Аналогичен примеру 1, в качестве образцов использовали листовые детали из титанового сплава ВТ6.

Пример 3

Аналогичен примеру 1, в качестве образцов использовали листовые детали из титанового сплава ОТ4.

Пример 4 - по способу-прототипу

Из представленных в таблице результатов видно, что адгезионная прочность покрытия, получаемого по предлагаемому способу, на 10-15% выше, чем в способе-прототипе, при сохранении высокой микротвердости на уровне прототипа.

Предлагаемый способ позволит увеличить ресурс и надежность деталей из титановых сплавов, работающих в условиях воздействия агрессивных сред, износа и высоких температур.

Таблица
№ п.п. Состав электролита, г/л Плотноть тока, А/дм2 Темпера-тура, °С Содержание дибензилового эфира в бисаренхроморганическом соединении, % Адгезионная прочность, МПа Микротвердость, ГПа
ортофосфорная кислота сегнетова соль молочная кислота
1 1156 20 - 10 55 5 630 17
2 1100 - 50 8 50 2 635 17
3 1200 - 35 5 60 - 640 16
4 - - - - - - 570 17

1. Способ нанесения износостойкого покрытия на титановые сплавы путем осаждения карбида хрома из паровой фазы бисаренхроморганического соединения, отличающийся тем, что перед осаждением карбида хрома проводят диффузионную электрохимическую обработку титанового сплава в электролите следующего химического состава, г/л:

ортофосфорная кислота 1100-1200
сегнетова соль или молочная кислота 20-50
вода до 1 л

2. Способ по п.1, отличающийся тем, что диффузионную электрохимическую обработку проводят в течение 1-2 ч при плотности тока 5-10 А/дм3 и температуре 50-60°С.

3. Способ по п.1, отличающийся тем, что перед осаждением карбида хрома из паровой фазы бисаренхроморганического соединения в соединение вводят 2-5 мас.% дибензилового эфира.

4. Способ по п.1, отличающийся тем, что процесс осаждения карбида хрома из паровой фазы бисаренхроморганического соединения проводят в вакууме или токе инертного газа при давлении ≤100 Па.



 

Похожие патенты:

Изобретение относится к коррозионно-стойкой тонкопленочной многослойной структуре и коррозионно-стойкому компоненту, обладающим низкой скоростью изнашивания и низким коэффициентом трения, и способу осаждения покрытия упомянутых пленок.

Изобретение относится к композиции металлических сплавов, а именно к износо-, эрозионно- и химически стойкому материалу на основе вольфрама, легированному углеродом, причем углерод в пересчете на полный вес материала составляет от 0.01 вес.% до 0.97 вес.%.
Изобретение относится к области порошковой металлургии, в частности к получению композиционных материалов. .

Изобретение относится к получению композиционных материалов, обладающих высокой термической и противоокислительной стойкостью. .

Изобретение относится к способам нанесения карбидохромовых покрытий термическим разложением бис-ареновых соединений хрома и найдет применение в различных областях, как например нефтедобывающей и нефтехимической промышленности, в которых используется оборудование с защитными коррозионно- и износостойкими поверхностями металлических деталей, в том числе из чугуна.
Изобретение относится к производству высокотемпературных материалов и может быть использовано в качестве теплонагруженных узлов ракетно-космической техники, в автомобиле- и тракторостроении для изготовления узлов очистки выхлопных газов, подшипников скольжения, торцевых уплотнений и пр.

Изобретение относится к устройствам для осаждения из газовой фазы слоев композиционных материалов и может быть использовано для получения слоев и изделий из карбида кремния, характеризующихся теоретической плотностью, стехиометрическим составом, а также высокой производительностью и выходом годного.

Изобретение относится к способу нанесения покрытия из оксида алюминия на деталь, имеющую поверхность из карбида кремния (SiC) и используемую в высокотемпературных областях техники

Изобретение относится к устройствам для получения пиролизом монофиламентных карбидокремниевых волокон

Изобретение относится к сфере производства гетероэпитаксиальных структур, которые могут быть использованы в технологии изготовления элементов полупроводниковой электроники, способных работать в условиях повышенных уровней радиации и высоких температур. Гетероэпитаксиальную полупроводниковую пленку на монокристаллической подложке кремния выращивают методом химического осаждения из газовой фазы. Проводят синтез гетероструктуры SiC/Si на монокристаллической подложке кремния в горизонтальном реакторе с горячими стенками путем формирования переходного слоя между подложкой и пленкой карбида кремния со скоростью не более 100 нм/ч при нагреве упомянутой подложки до температуры от 700 до 1050°C с использованием газовой смеси, содержащей 95-99% водорода и в качестве источников кремния и углерода SiH4, C2H6, С3Н8, (CH3)3SiCl, (CH3)2SiCl2, при этом C/Si≥2, и формирования монокристаллической пленки карбида кремния с помощью подачи в реактор парогазовой смеси водорода и CH3SiCl3 при поддержании в реакторе абсолютного давления в диапазоне от 50 до 100 мм рт.ст. В качестве подложки кремния используют пластину, имеющую угол наклона относительно кристаллографического направления (111) в направлении (110) от 1 до 30 угловых градусов и в направлении (101) от 1 до 30 угловых градусов. Обеспечивается улучшение совместимости двух материалов слоя карбида кремния и подложки кремния с различным периодом кристаллических решеток, при этом понижаются механические напряжения в гетероструктуре и получаются более низкие плотности дефектов в слое карбида кремния. 6 н.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к скользящему элементу поршневого узла двигателя внутреннего сгорания, а также к поршневому кольцу и гильзе цилиндра, содержащим упомянутый скользящий элемент. Скользящий элемент содержит, по меньшей мере на одном участке, по меньшей мере один слой а-С:Н:Ме, где Me - германий и кремний, и слой а-С:Н, нанесенный на слой а-С:Н:Ме в качестве покровного слоя. Суммарная толщина упомянутого по меньшей мере одного слоя а-С:Н:Ме составляет от 15 до 40 мкм. Обеспечивается получение скользящего элемента, поршневого кольца или гильзы цилиндра с пониженным коэффициентом трения в течение продолжительного периода времени, предпочтительно в течение всего срока службы двигателя сгорания, в котором используется данный скользящий элемент. 3 н. и 8 з.п. ф-лы, 2 ил., 2 табл., 2 пр.

Изобретение относится к покрытому карбидом тантала углеродному материалу и способу его изготовления. Покрытый карбидом тантала углеродный материал содержит углеродную подложку и покрывающую ее пленку карбида тантала. При измерениях с изменением угла ориентации (α) образца покрытого карбидом тантала углеродного материала покрывающая пленка карбида тантала имеет максимальную величину дифракционного пика, соответствующего плоскости (311) карбида тантала, определенyю с помощью рентгеновской дифракции, при угле ориентации (α) по меньшей мере 80 градусов. Способ изготовления покрытого карбидом тантала углеродного материала за счет формирования покрывающей пленки карбида тантала на углеродной подложке включает формирование кристаллических зародышей карбида тантала на поверхности углеродной подложки при температурах от 850 до 950°С и осуществление роста кристаллических зародышей карбида тантала при нагреве с постепенным увеличением рабочей температуры, при котором обеспечивают разницу температур 50°С или больше. Обеспечивается покрытый карбидом тантала углеродный материал, являющийся термостойким и устойчивым к газовому травлению. 5 н. и 24 з.п. ф-лы, 27 ил., 11 табл., 10 пр.
Наверх