Центробежный насос



Центробежный насос
Центробежный насос
Центробежный насос

 


Владельцы патента RU 2449173:

Закрытое акционерное общество Научно-производственное объединение "ТЭН" (RU)

Изобретение относится к насосостроению. Насос содержит корпус, в котором смонтированы вал с рабочим колесом и направляющий аппарат. Корпус выполнен со спиральным отводом и включает внешний и внутренний витки с входным спиральным и выходным диффузорным участками, последовательно соединенные между собой во внутреннем витке и через обводной участок во внешнем. Сумма площадей начального поперечного сечения (ПС) внутреннего витка и обводного участка внешнего витка равна площади выходного сечения спирального участка внешнего витка, а сумма аналогичных площадей начальных ПС внешнего витка и смежного с ним диффузорного участка внутреннего витка равна площади выходного ПС спирального участка внутреннего витка. Внешний и внутренний витки разделены внутриотводной стенкой, которая в зоне смежных диффузорных участков делит их площади ПС на входе, соответственно, в соотношении 1,5±0,15. Изобретение направлено на повышение КПД насоса при снижении энергозатрат на перекачивание при одновременном повышении надежности и ресурса работы насоса, что достигается за счет формы корпуса насоса с двухвитковой закруткой напорного потока перекачиваемой жидкости при найденной конфигурации спиральных, обводного и диффузорных участков и соотношение площадей их начальных и выходных сечений. 9 з.п. ф-лы, 3 ил.

 

Изобретение относится к насосостроению, а именно к конструкциям центробежных насосов.

Известен центробежный насос с двухвитковым спиральным отводом, содержащий внутренний виток, имеющий спиральный и диффузорный каналы, и внешний виток, имеющий спиральный и обводной каналы. Обводной канал состоит из диффузорного участка, участка с постоянной площадью проходного сечения и конфузорного участка (SU 1178958 A, опубл. 15.09.1985).

Известен центробежный насос, содержащий рабочее колесо с лопатками и двухвитковый отвод. Внутренний виток состоит из последовательно расположенных спирального, диффузорного и обводного каналов. Площадь входного сечения обводного канала выбрана равной площади выходного сечения спирального канала внутреннего витка. Площади входных сечений общего и внутреннего спиральных каналов равны (SU 1298427 A1, опубл. 23.03.1987).

Известен центробежный насос с рабочим колесом двустороннего входа, содержащий полуспиральный подвод и спиральный отвод, образованные полостями в крышке и корпусе, подшипники скольжения, торцевое уплотнение вала. За рабочим колесом установлен направляющий аппарат (RU 57393 U1, опубл. 10.10.2006).

Недостатками известных решений являются относительно невысокая эффективность выравнивания потоков жидкости, значительные гидравлические потери во внешнем и внутреннем витках отвода, что в целом приводит к недостаточной разгрузке от радиальных сил рабочего колеса центробежного насоса.

Задача, решаемая изобретением, заключается в улучшении гидродинамических и энергетических характеристик насоса, повышении КПД, надежности и долговечности насоса при снижении энергозатрат на работу по перекачиванию жидких сред.

Поставленная задача решается тем, что предлагаемый центробежный насос, согласно изобретению, содержит корпус, в котором смонтированы ротор в виде вала с рабочим колесом и направляющий аппарат, при этом корпус выполнен со спиральным отводом, включающим два витка - внешний и внутренний, каждый из которых имеет входной спиральный и выходной диффузорный участки, последовательно соединенные между собой во внутреннем витке и через обводной участок во внешнем, начальное поперечное сечение внешнего витка выполнено первым по ходу закрутки спирали, а внутреннего витка вторым, расположено за первым со смещением по спирали и совмещено в радиально-осевой плоскости ротора с начальным сечением обводного участка внешнего витка, при этом сумма площадей их начального поперечного сечения равна площади выходного сечения спирального участка внешнего витка, а сумма аналогичных площадей начальных поперечных сечений внешнего витка и смежного с ним диффузорного участка внутреннего витка равна площади выходного поперечного сечения спирального участка внутреннего витка, причем внешний и внутренний витки разделены внутриотводной стенкой, которая в зоне разделения участков обводного внешнего и спирального внутреннего из указанных витков выполнена спирально-цилиндрической, а в зоне смежных диффузорных участков делит их площади поперечного сечения на входе в соотношении

FД1:FД2=1,5±0,15,

где FД1 и FД2 - площадь начального сечения диффузорного участка соответственно внешнего и внутреннего витков,

с последующим плавным выравниванием указанного поперечного сечения до соотношения на выходе

FB1=FB2,

где FВ1>FД1, FB2>FД2,

FВ1 и FB2 - площади выходного сечения диффузорного участка соответственно внешнего и внутреннего витков, а рабочее колесо выполнено, предпочтительно, двухвходным.

При этом центробежный насос может быть выполнен горизонтальным, одноступенчатым, корпус насоса выполнен разъемным, содержит крышку, проточную часть, включающую всасывающую и напорную полости с разделяющим их рабочим колесом по ходу потока перекачиваемой жидкости, например, нефти, а также входной и выходной патрубки, упомянутый двухвитковый спиральный отвод, а рабочее колесо установлено на валу ротора с горизонтальной осью вращения, расположенной в плоскости, нормальной векторам потока у внешних границ входного и выходного патрубков, которые расположены ниже плоскости разъема.

Центробежный насос может быть снабжен двумя узлами торцевых уплотнений вала и подшипниковыми узлами, включающими размещенные с двух сторон от рабочего колеса два гидродинамических подшипника скольжения для восприятия радиальной нагрузки ротора и сдвоенным радиально-упорным подшипником качения для восприятия остаточного осевого усилия, действующего на ротор.

Гидродинамические подшипники скольжения могут быть снабжены системой принудительной смазки, преимущественно, перекачиваемой насосом жидкостью.

Направляющий аппарат соосно с валом может быть неподвижно установлен в корпусе насоса между выходом из рабочего колеса и напорной полостью по ходу движения перекачиваемого потока, при этом направляющий аппарат содержит кольцевую платформу с внутренним диаметром, превышающим диаметр рабочего колеса, и систему расположенных на нем выравнивающих поток тонких лопаток со спиральной закруткой, противоположно направленной относительно закрутки лопаток рабочего колеса и плавно расширяющихся к внешнему контуру с образованием между ними системы диффузорных каналов, при этом радиальная ширина упомянутой кольцевой платформы направляющего аппарата и проекции лопаток на условную осевую плоскость ротора принята практически перекрывающей с обеспечением вращения колеса разницу между радиальными размерами условной осесимметричной контурной окружности, охватывающей указанное рабочее колесо, и аналогичной окружности радиусом, равным минимальному радиальному расстоянию от оси ротора до ближайшей точки каждого из витков упомянутого двухвиткового отвода при вариабельном изменении конструкции диаметра рабочего колеса и универсальном сохранении размеров корпуса и отвода насоса.

Корпус и крышка могут быть выполнены, предпочтительно, литыми из стали, а патрубки - под приварку к трубопроводам и направлены горизонтально, перпендикулярно оси насоса.

Центробежный насос может быть оснащен датчиками контроля температуры подшипников скольжения и температуры нефти на выходном патрубке, вибродатчиками подшипниковых узлов, не менее чем одним датчиком контроля осевых смещений ротора и датчиком контроля частоты вращения ротора.

Вал ротора с одной стороны может быть удлинен консольным концевиком для соединения с электроприводом.

Конструкция насоса может быть выполнена обеспечивающей возможность замены торцевых уплотнений без демонтажа корпусов подшипниковых опор.

Центробежный насос может быть предназначен для магистральной перекачки нефти и выполнен с возможностью подачи нефти, в том числе в диапазоне от 3000 до 8500 м3/ч при обеспечении напора от 200 до 280 м.

Технический результат, достигаемый приведенной совокупностью признаков, заключается в повышении КПД насоса при снижении энергозатрат на перекачивание нефти и нефтепродуктов при одновременном повышении надежности и ресурса работы предлагаемого насоса, что достигается за счет разработанных в изобретении формы корпуса насоса с двухвитковой закруткой напорного потока перекачиваемой жидкости при найденной конфигурации спиральных, обводного и диффузорных участков и соотношении площадей их начальных и выходных сечений, что позволяет существенно снизить гидравлические потери во внешнем и внутреннем витках отвода и обеспечивает эффективную разгрузку от радиальных сил рабочего колеса центробежного насоса.

Сущность изобретения поясняется чертежами, где:

на фиг.1 показан центробежный нефтяной магистральный насос, продольный разрез;

на фиг.2 - корпус центробежного нефтяного магистрального насоса с двухвитковым отводом (повернут на 90°), продольный разрез;

на фиг.3 - корпус центробежного нефтяного магистрального насоса с двухвитковым отводом и направляющим аппаратом (повернут на 90°), продольный разрез.

Центробежный насос содержит корпус 1, в котором смонтированы ротор в виде вала 2 с рабочим колесом 3 и направляющий аппарат 4. Корпус 1 выполнен со спиральным отводом, включающим два витка 5 и 6 - внешний и внутренний соответственно. Внутренний виток 6 имеет последовательно соединенные между собой входной спиральный участок 7 и выходной диффузорный участок 8. Внешний виток 5, входной спиральный участок 9 и выходной диффузорный участок 10 соединены между собой через обводной участок 11. Начальное поперечное сечение внешнего витка 5 выполнено первым по ходу закрутки спирали, а внутреннего витка 6 вторым, расположено за первым со смещением по спирали и совмещено в радиально-осевой плоскости ротора с начальным сечением обводного участка 11 внешнего витка 5. Сумма площадей их начального поперечного сечения равна площади выходного сечения спирального участка 9 внешнего витка 5, а сумма аналогичных площадей начальных поперечных сечений внешнего витка 5 и смежного с ним диффузорного участка 8 внутреннего витка 6 равна площади выходного поперечного сечения спирального участка 7 внутреннего витка 6.

Внешний и внутренний витки 5 и 6 разделены внутриотводной стенкой 12. Внутриотводная стенка 12 в зоне разделения обводного участка 11 внешнего витка 5 и спирального участка 7 внутреннего витка 6 выполнена спирально-цилиндрической, а в зоне смежных диффузорных участков 8, 10 делит их площади поперечного сечения на входе в соотношении

FД1:FД2=1,5±0,15,

где FД1 и FД2 - площадь начального сечения диффузорного участка соответственно внешнего и внутреннего витков,

с последующим плавным выравниванием указанного поперечного сечения до соотношения на выходе

FB1=FB2,

где FВ1>FД1, FВ2>FД2,

FВ1 и FB2 - площадь выходного сечения диффузорного участка соответственно внешнего и внутреннего витков,

FС1 и FC2 - площадь начального сечения спирального участка соответственно внешнего и внутреннего витков.

Рабочее колесо 3 выполнено, предпочтительно, двухвходным.

Центробежный насос выполнен горизонтальным, одноступенчатым. Корпус 1 насоса выполнен разъемным, содержит крышку 13, проточную часть, включающую всасывающую и напорную полости 14 и 15 соответственно с разделяющим их рабочим колесом 3 по ходу потока перекачиваемой жидкости, например, нефти, а также входной и выходной патрубки 16 и 17 и упомянутый двухвитковый спиральный отвод. Рабочее колесо 3 установлено на валу 2 ротора с горизонтальной осью вращения, расположенной в плоскости, нормальной векторам потока у внешних границ входного и выходного патрубков 16 и 17, которые расположены ниже плоскости разъема.

Центробежный насос снабжен двумя узлами торцевых уплотнений 18 вала и подшипниковыми узлами, включающими размещенные с двух сторон от рабочего колеса 3 два гидродинамических подшипника 19 скольжения для восприятия радиальной нагрузки ротора и сдвоенным радиально-упорным подшипником 20 качения для восприятия остаточного осевого усилия, действующего на ротор.

Гидродинамические подшипники 19 скольжения снабжены системой принудительной смазки, преимущественно, перекачиваемой насосом жидкостью.

Направляющий аппарат 4 соосно с валом 2 неподвижно установлен в корпусе 1 насоса между выходом из рабочего колеса 3 и напорной полостью 15 по ходу движения перекачиваемого потока. Направляющий аппарат 4 содержит кольцевую платформу 21 с внутренним диаметром, превышающим диаметр рабочего колеса 3, и систему расположенных на нем выравнивающих поток тонких лопаток 22 со спиральной закруткой, противоположно направленной относительно закрутки лопаток рабочего колеса 3 и плавно расширяющихся к внешнему контуру с образованием между ними системы диффузорных каналов. Радиальная ширина кольцевой платформы 21 направляющего аппарата 4 и проекции лопаток 22 на условную осевую плоскость ротора принята практически перекрывающей с обеспечением вращения рабочего колеса 3 разницу между радиальными размерами условной осесимметричной контурной окружности, охватывающей указанное рабочее колесо 3 и аналогичной окружности радиусом, равным минимальному радиальному расстоянию от оси ротора до ближайшей точки каждого из витков 5, 6 двухвиткового отвода при вариабельном изменении конструкции диаметра рабочего колеса 3 и универсальном сохранении размеров корпуса 1 и отвода насоса.

Корпус 1 и крышка 13 насоса выполнены, предпочтительно, литыми из стали, а патрубки 16, 17 - под приварку к трубопроводам и направлены горизонтально, перпендикулярно оси насоса.

Насос оснащен датчиками контроля температуры подшипников 19 скольжения и температуры нефти на выходном патрубке 17, вибродатчиками подшипниковых узлов, не менее чем одним датчиком контроля осевых смещений ротора и датчиком контроля частоты вращения ротора (на чертежах не показаны).

Вал 2 ротора с одной стороны удлинен консольным концевиком 23 для соединения с электроприводом.

Конструкция насоса выполнена обеспечивающей возможность замены торцевых уплотнений 18 без демонтажа корпусов подшипниковых опор.

Насос предназначен для магистральной перекачки нефти и выполнен с возможностью подачи нефти, в том числе в диапазоне от 3000 до 8500 м3/ч при обеспечении напора от 200 до 280 м.

Работу центробежного насоса осуществляют следующим образом.

При включении насоса обеспечивают вращение ротора, рабочее колесо 3 которого нагнетает перекачиваемую жидкость, например, нефть из всасывающей полости 14 в напорную полость 15.

Далее перекачиваемую жидкость из напорной полости 7 подают в витки 5 и 6 двухвиткового отвода, где пропускают с выравнивающим снижением скоростей и детурбулизацией потоков через последовательную систему спиральных участков 7, 9 обводного участка 11 и диффузорных участков 8, 10 двухвитковой части корпуса 1 насоса, обеспечивая максимальное выравнивание скоростей на выходе из диффузорных участков 8, 10. При этом существенно снижаются гидравлические потери при выходе жидкости в нагнетательную линию и радиальные силы, действующие на рабочее колесо 3 центробежного насоса, что особенно актуально для крупных, например, магистральных нефтяных насосов с точки зрения повышения их ресурса работы.

Таким образом, за счет оптимизации конструкции проточной части корпуса центробежного насоса обеспечивается максимально полное выравнивание потоков жидкости в двухвитковом отводе, что позволяет существенно снизить гидравлические потери во внешнем и внутреннем витках отвода и в целом обеспечить эффективную разгрузку от радиальных сил рабочего колеса центробежного насоса, что повышает КПД насоса в целом.

1. Центробежный насос, характеризующийся тем, что содержит корпус, в котором смонтированы ротор в виде вала с рабочим колесом и направляющий аппарат, при этом корпус выполнен со спиральным отводом, включающим два витка внешний и внутренний, каждый из которых имеет входной спиральный и выходной диффузорный участки, последовательно соединенные между собой во внутреннем витке и через обводной участок во внешнем, начальное поперечное сечение внешнего витка выполнено первым по ходу закрутки спирали, а внутреннего витка вторым, расположено за первым со смещением по спирали и совмещено в радиально-осевой плоскости ротора с начальным сечением обводного участка внешнего витка, при этом сумма площадей их начального поперечного сечения равна площади выходного сечения спирального участка внешнего витка, а сумма аналогичных площадей начальных поперечных сечений внешнего витка и смежного с ним диффузорного участка внутреннего витка равна площади выходного поперечного сечения спирального участка внутреннего витка, причем внешний и внутренний витки разделены внутриотводной стенкой, которая в зоне разделения участков обводного внешнего и спирального внутреннего из указанных витков выполнена спирально-цилиндрической, а в зоне смежных диффузорных участков делит их площади поперечного сечения на входе в соотношении
FД1:FД2=1,5±0,15,
где FД1 и FД2 - площадь начального сечения диффузорного участка соответственно внешнего и внутреннего витков, с последующим плавным выравниванием указанного поперечного сечения до соотношения на выходе FB1=FB2,
где FB1>FД1, FB2>FД2,
FB1 и FB2 - площади выходного сечения диффузорного участка соответственно внешнего и внутреннего витков, а рабочее колесо выполнено, предпочтительно, двухвходным.

2. Центробежный насос по п.1, отличающийся тем, что выполнен горизонтальным, одноступенчатым, корпус насоса выполнен разъемным, содержит крышку, проточную часть, включающую всасывающую и напорную полости с разделяющим их рабочим колесом по ходу потока перекачиваемой жидкости, например нефти, а также входной и выходной патрубки, упомянутый двухвитковый спиральный отвод, а рабочее колесо установлено на валу ротора с горизонтальной осью вращения, расположенной в плоскости, нормальной векторам потока у внешних границ входного и выходного патрубков, которые расположены ниже плоскости разъема.

3. Центробежный насос по п.1, отличающийся тем, что он снабжен двумя узлами торцевых уплотнений вала и подшипниковыми узлами, включающими размещенные с двух сторон от рабочего колеса два гидродинамических подшипника скольжения для восприятия радиальной нагрузки ротора и сдвоенным радиально-упорным подшипником качения для восприятия остаточного осевого усилия, действующего на ротор.

4. Центробежный насос по п.3, отличающийся тем, что гидродинамические подшипники скольжения снабжены системой принудительной смазки, преимущественно, перекачиваемой насосом жидкостью.

5. Центробежный насос по п.1, отличающийся тем, что направляющий аппарат соосно с валом неподвижно установлен в корпусе насоса между выходом из рабочего колеса и напорной полостью по ходу движения перекачиваемого потока, при этом направляющий аппарат содержит кольцевую платформу с внутренним диаметром, превышающим диаметр рабочего колеса, и систему расположенных на нем выравнивающих поток тонких лопаток со спиральной закруткой, противоположно направленной относительно закрутки лопаток рабочего колеса и плавно расширяющихся к внешнему контуру с образованием между ними системы диффузорных каналов, при этом радиальная ширина упомянутой кольцевой платформы направляющего аппарата и проекции лопаток на условную осевую плоскость ротора принята практически перекрывающей с обеспечением вращения колеса разницу между радиальными размерами условной осесимметричной контурной окружности, охватывающей указанное рабочее колесо, и аналогичной окружности радиусом, равным минимальному радиальному расстоянию от оси ротора до ближайшей точки каждого из витков упомянутого двухвиткового отвода при вариабельном изменении конструкции диаметра рабочего колеса и универсальном сохранении размеров корпуса и отвода насоса.

6. Центробежный насос по п.1, отличающийся тем, что корпус и крышка выполнены, предпочтительно, литыми из стали, а патрубки - под приварку к трубопроводам и направлены горизонтально, перпендикулярно оси насоса.

7. Центробежный насос по п.1, отличающийся тем, что насос оснащен датчиками контроля температуры подшипников скольжения и температуры нефти на выходном патрубке, вибродатчиками подшипниковых узлов, не менее чем одним датчиком контроля осевых смещений ротора и датчиком контроля частоты вращения ротора,

8. Центробежный насос по п.1, отличающийся тем, что вал ротора с одной стороны удлинен консольным концевиком для соединения с электроприводом.

9. Центробежный насос по п.3, отличающийся тем, что конструкция насоса выполнена обеспечивающей возможность замены торцевых уплотнений без демонтажа корпусов подшипниковых опор.

10. Центробежный насос по п.1, отличающийся тем, что насос предназначен для магистральной перекачки нефти и выполнен с возможностью подачи нефти, в том числе в диапазоне от 3000 до 8500 м3/ч при обеспечении напора от 200 до 280 м.



 

Похожие патенты:

Изобретение относится к насосостроению, а именно к корпусам центробежных насосов с двухвитковыми отводами. .

Изобретение относится к насосостроению, к конструкциям направляющих аппаратов преимущественно, крупных центробежных нефтяных магистральных насосов. .

Изобретение относится к насосостроению, а именно к конструкциям центробежных насосов. .

Изобретение относится к центробежному насосу, содержащему множество каналов, по меньшей мере один элемент которых имеет один или более неосесимметричных контуров каналов, образованных по меньшей мере частично лопастями или лопатками неравной высоты, и способы изготовления и применения таких насосов для перекачивания текучих сред, например в и из буровых скважин (стволов скважин), хотя изобретение применимо к насосам, сконструированным для любого предполагаемого использования, включая, но не ограничиваясь так называемыми работами по транспортировке текучих сред на поверхность.

Изобретение относится к области гидромашиностроения и может быть применено в многоступенчатых центробежных насосах, особенно малошумных, к которым предъявляются повышенные требования по минимизации турбулентности потока и компактности конструкции.

Изобретение относится к многоступенчатым насосам, используемым для добычи нефти из скважин и для подачи воды в продуктивный нефтеносный пласт для поддержания и повышения в нем пластового давления.

Изобретение относится к энергетическим турбомашинам и может найти применение в центробежных компрессорах, предназначенных для обеспечения широкого диапазона производительностей сжимаемого газа.

Изобретение относится к области насосостроения, и прежде всего к многоступенчатым насосам, используемым для добычи нефти из скважин и для подачи воды в продуктивный нефтеносный пласт для поддержания и повышения в нем пластового давления.

Изобретение относится к энергетическим турбомашинам и может использоваться в лопаточных диффузорах центробежных компрессоров, нагнетателей, вентиляторов и насосов.

Изобретение относится к нефтедобывающей промышленности при добыче нефти центробежными насосами. .

Изобретение относится к насосостроению, а именно к конструкциям центробежных насосов. .

Изобретение относится к насосостроению, а именно к конструкциям центробежных насосов с торцовыми уплотнениями, в которых в качестве запирающей жидкости используется перекачиваемая среда.

Изобретение относится к нефтяному машиностроению, в частности к насосам для подъема из скважин жидкости с повышенным содержанием песка и проппанта. .

Изобретение относится к области насосостроения и предназначено для откачки различных жидкостей из емкостей, когда необходимо максимально осушить емкость. .

Изобретение относится к водоподъемным башенным установкам с насосными агрегатами. .

Изобретение относится к нефтяной и газовой промышленности и применяется при транспортировке высокообводненной продукции скважин нефтяных месторождений с помощью дожимных насосных станций (ДНС) на объекты подготовки нефти.

Изобретение относится к технике добычи нефти. .

Изобретение относится к нефтедобывающей отрасли и может быть использовано для гашения вибрации, предотвращения маятникового эффекта, предохранения электрокабеля от механических повреждений.

Изобретение относится к насосостроению. .

Изобретение относится к насосостроению. .

Изобретение относится к нефтяному машиностроению, в частности к многоступенчатым погружным насосам для откачки пластовой жидкости из скважин
Наверх