Гидродинамический стенд

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов. Гидродинамический стенд содержит камеру с торцевыми переборками, заполненную жидкостью, и направляющими элементами для подводного аппарата, устройство для его торможения, воздушную демпфирующую полость, систему установки гидростатического давления и узел крепления пускового устройства подводного аппарата. Торцевая переборка камеры, с размещенным в ней пусковым устройством, выполнена съемной, а тормозное устройство штангами жестко позиционировано с пусковым устройством. При этом, по меньшей мере, на двух штангах закреплены конструкции с направляющими элементами в виде рамочных кронштейнов и, по меньшей мере, на одной из них установлены датчики для фиксации положения (движения) подводного аппарата при пуске, кабельные связи которых с измерительно-регистрирующей аппаратурой размещены внутри штанги. Прочная камера гидродинамического стенда заполнена ингибитором, а ее демпфирующая полость - инертным газом, при этом камера оснащена клапаном для сброса газа или жидкости по мере продвижения в ней подводного аппарата при пуске. Технический результат заключается в повышении производительности работы и безопасности их проведения. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов.

Наиболее известны гидродинамические стенды для технологических испытаний торпедных аппаратов (подводных пусковых устройств). Так, стенд для испытаний торпедных аппаратов, в которых используется самовыход торпед (патент РФ №2203469, МПК F41F 3/10, 2003), включает резервуар с водой, имитирующий забортную среду, тросовую линию, определяющую направление свободного перемещения стартующей торпеды в баке, устройство ее торможения и остановки при завершении испытания, а также измерительно-регистрирующую и пусковую аппаратуру.

Недостатками такого стенда являются большие габариты, отсутствие имитации забортного давления, невозможность испытаний пусковых устройств с силовыми установками динамического разгона технологического изделия (броскового макета подводного аппарата) до необходимых для безопасного отделения подводного аппарата от его подвижного носителя скоростей выхода за срез пусковой трубы.

Для исключения перечисленных недостатков разрабатываются гидродинамические стенды, содержащие прочную заполняемую водой камеру, в которой организуется демпфирующая воздушная полость, используемая для создания необходимого гидростатического давления в камере перед началом испытаний и имитационных условий для реализации выхода подводного аппарата за обводы его носителя.

Наиболее близким к настоящему изобретению по устройству является гидродинамический стенд по заявке №2008147919/28 от 04.12.2008 (положительное решение о выдаче патента от 29.03.2010). Согласно заявке гидродинамический стенд содержит заполненную водой камеру, с направляющими дорожками для подводного аппарата, устройство для его торможения, воздушную демпфирующую емкость, систему установки гидростатического давления и узел крепления пускового устройства подводного аппарата. Особенность гидродинамического стенда заключается в том, что в камере размещены подвижная перегородка для разграничения демпфирующей емкости и воды, выполненная в виде поршня, с ограничивающим ее ход упором и замыкателем для фиксации конечного положения поршня; переборка с откидывающейся крышкой, формирующая расходную полость, в которой установлен быстроразъемный узел крепления пускового устройства подводного аппарата, частично расположенного вне камеры. Причем расходная полость и камера оснащены системой уравнивания давления с демпфирующей емкостью. Благодаря такому выполнению, обеспечивается приближение режима пуска подводных аппаратов к реальным условиям их работы на глубине.

Однако такое устройство не лишено недостатков.

Для испытания пусковых устройств, в частности транспортно-пусковых контейнеров для подводных аппаратов, обладающих близкими размерами калиброванных частей (например, 107, 120, 127, 150 и т.д. мм), возникает необходимость в создании новых стендов, что сопровождается финансовыми и временными тратами на их изготовление, а также сложными монтажными и наладочными работами.

Точная установка неконтактных датчиков, например герконов, реагирующих на присутствие магнитных меток на бросовых макетах подводных аппаратов, связана с трудностями по конструктивному оформлению установочных мест для датчиков и необходимостью большого количества операций по их монтажу и демонтажу, герметизации их кабельных связей с измерительно-регистрирующей и управляющей аппаратурой и т.п.

При использовании в транспортно-пусковых контейнерах ингибиторов (нейтральных, исключающих разрушающее воздействие на резинотехнические изделия и коррозийно-нестойкие материалы, жидкостей) применение воды в гидродинамических стендах требует дополнительных операций по заполнению пусковых устройств ингибитором.

Установка гидростатического давления наддувом воздухом демпфирующей полости прочной камеры может способствовать возникновению аварийных ситуаций при попадании в полость продуктов неполного сгорания топлива генератора горячих газов, энергетически обеспечивающего динамический пуск подводного аппарата.

Для улучшения качества работы гидродинамического стенда приходится увеличивать (до 10-40 раз по отношению к водоизмещению броскового макета) объем демпфирующей полости.

Технической задачей настоящего изобретения является расширение эксплуатационных возможностей использования предлагаемого стенда путем сокращения времени его переоснащения для работы с изделиями других калибров, сравнительно близких по значению.

Технический результат достигается за счет того, что в гидродинамическом стенде, содержащем заполненную жидкостью прочную камеру с торцевыми переборками, на одной из которых, выполненной съемной, размещен быстроразъемный узел крепления пускового устройства подводного аппарата, систему установки гидростатического давления и измерительно-регистрирующую и управляющую работой стенда аппаратуру, внутри камеры размещены заполненная газом демпфирующая полость и устройство для торможения подводного аппарата, жестко позиционированное штангами с пусковым устройством, при этом по меньшей мере на двух штангах закреплена конструкция в виде рамочных кронштейнов с установленными на ней направляющими элементами для подводного аппарата, а датчики движения (положения), установленные по меньшей мере на одной штанге кабельными связями, пропущенными внутри нее в пределах камеры, соединены измерительно-регистрирующей и управляющей аппаратурой.

Введенные в конструктив штанги, кроме решения прочностных задач, могут быть использованы для точной выставки датчиков положения (движения) подводного аппарата относительно переднего среза пускового устройства, при этом кабельные связи датчиков с внешней, по отношению к камере, измерительно-регистрирующей и управляющей аппаратурой могут быть частично проложены внутри по меньшей мере одной из штанг, оснащенной устройством герметизации этих кабелей.

Многократность проведения испытаний без дополнительных работ по заполнению транспортно-пускового контейнера ингибитором достигается за счет того, что в качестве заполняющей прочную камеру жидкости применен ингибитор, использующийся в пусковом устройстве.

При использовании в качестве энергетической основы динамического пуска подводного аппарата генератора горячих газов, в демпфирующей полости может быть использован инертный газ, например азот.

Качественное снижение массогабаритных характеристик гидродинамического стенда с соответствующим сокращением затрат и повышение безопасности опытных работ могут быть достигнуты также путем уменьшения (до 2-4 величин водоизмещения подводного аппарата) объема демпфирующей полости за счет применения системы поддержания в ней постоянства установочного давления, включающей клапан сброса газа из демпфирующей полости по мере входа в камеру выпускаемого из пускового устройства подводного аппарата.

Предлагаемый гидродинамический стенд представлен на:

- Фиг.1 - общий вид заявляемого устройства в продольном сечении;

- Фиг.2 - поперечное сечение устройства.

Стенд содержит (Фиг.1) прочную камеру 1, включающую обечайку 2, замыкаемую с помощью штанг 3 торцевыми перегородками 4, заполненную жидкостью 5 так, что в верхней части камеры образована демпфирующая полость 6. На торцевой перегородке 4 установлен обеспечивающий пуск броскового макета 7 подводного аппарата пусковой блок 8, а на другом - тормозное устройство 9. На штангах неподвижно закреплены (Фиг.2) рамочные кронштейны 10 с направляющими элементами 11.

На обечайке 2 установлен (Фиг.1) стравливающий клапан 12 системы поддержания в демпфирующей полости постоянства давления, имеющий тарелку 13, уплотнитель 14, полость 15 управления и пружины - поддерживающую 16 и возвратную 17.

На Фиг.1 показаны также:

- 18 - датчики положения макета 7, снабженного кольцевой магнитной меткой 19, относительно переднего среза пускового блока;

- 20 - проложенный внутри штанги 3 кабель связи датчиков 18 с измерительно-регистрирующей и управляющей аппаратурой 21 и

- 22 - узел герметизации кабеля 20, установленный на его выходе из штанги 3.

Тормозное устройство 9 имеет раскрепленные с помощью проставышей 23 направляющий блок 24, обтюрирующие макет 7 переборки 25, буфер 26 и прочную крышку 27.

Гидродинамический стенд работает следующим образом.

Перед началом испытаний все полости стенда находятся под атмосферным давлением, стравливающий клапан 12 под действием возвратной пружины 17 закрыт.

С помощью не показанных на схеме заливного устройства и системы вентиляции внутренняя полость прочной камеры 1 заполняется ингибитором.

С помощью не обозначенных на схеме клапанов системы поддержания постоянства давления в демпфирующей полости 6 (подробнее см. заявку №2010100766 от 11.01.2010 г.) в нее и в полость 15 управления стравливающего клапана 12 подают газ (воздух или инертный газ, например азот) до достижения установочного давления имитации глубины работы пускового блока 8, которое в полости 15 замыкается специально предусмотренным клапаном. Стенд подготовлен к работе.

По команде от аппаратуры 21 срабатывает пусковой блок 8, макет 7 выходит в камеру 1, что сопровождается увеличением давления в демпфирующей полости 6. За счет разности давлений в ней и установочного давления в полости 15 управления стравливающего клапана 12 его тарелка 13, преодолевая усилие возвратной пружины 17, отходит от уплотнителя 14, что предопределяет регулируемый сброс газа из демпфирующей полости 6 и, соответственно, поддержание в ней постоянства установочного давления. В случае когда демпфирующая полость ограничена, как показано на Фиг.1, специальным колпаком, а тарелка 13 клапана 12 касается жидкости, поддержание давления в камере 1 постоянным будет осуществляться сбросом жидкости через стравливающий клапан 12. Это рационально при имитации больших глубин.

Перемещение макета 7 по направляющим элементам 11 фиксируется аппаратурой 21 с помощью датчиков 18.

После полного выхода из пускового блока 8 макета 7 его носовая оконечность входит в тормозное устройство 9. За счет обтюрации макета 7 в переборках 24 давление в замыкаемой макетом емкости тормозного устройства 9 возрастает, чем формируется тормозное воздействие на макет 7. При его подходе к буферу 26 он останавливается (подробнее см. патент РФ на полезную модель №87510, 2009).

После снятия давления в демпфирующей полости 6 и слива жидкости из прочной камеры 1 пусковой блок 8 может быть отсоединен от нее и подготовлен к следующей работе стенда.

Предлагаемое конструктивно-технологическое решение гидродинамического стенда обладает еще одной положительной особенностью. Оно легко перенастраивается на работу с пусковым блоком, оснащенным другим макетом 7, имеющим отличную по величине от начальной калиброванную часть. В этом случае, при демонтированных из обечайки днищах со штангами, в условиях монтажного участка, на посадочное место в торцевой переборке 4 устанавливается подготавливаемый к работе другой пусковой блок 8. Направляющие элементы 11 на рамочных кронштейнах 10 заменяются и центрируются под измененный калибр макета 7; при снятой крышке 27 тормозного устройства 9 устанавливаются сменные переборки 25, корректируется в соответствии с необходимостью положение датчиков 18 на штанге 3, после чего завершается монтаж стенда в целом.

Таким образом, качественно сокращаются временные траты, а вместе с ними финансовые и трудовые. В соответствии с новыми требованиями могут быть заменены ингибитор и газ, подаваемый в демпфирующую полость 6.

Предлагаемое техническое решение гидродинамического стенда обеспечивает повышение производительности опытных работ и надежную безопасность их проведения.

1. Гидродинамический стенд, содержащий камеру с торцевыми переборками, заполненную жидкостью, и направляющими элементами для подводного аппарата, устройство для его торможения, воздушную демпфирующую полость, систему установки гидростатического давления, быстроразъемный узел крепления пускового устройства подводного аппарата, отличающийся тем, что торцевая переборка камеры, с размещенным в ней узлом для крепления пускового устройства, выполнена съемной, тормозное устройство штангами жестко позиционировано с пусковым устройством, при этом по меньшей мере на двух штангах закреплены конструкции с направляющими элементами для подводного аппарата, а по меньшей мере на одной из штанг установлены датчики положения (движения) последнего относительно переднего среза пускового устройства в режиме пуска.

2. Гидродинамический стенд по п.1, отличающийся тем, что конструкции с направляющими элементами для подводного аппарата выполнены в виде рамочных кронштейнов.

3. Гидродинамический стенд по п.1, отличающийся тем, что кабельные связи датчиков положения (движения) подводного аппарата с измерительно-регистрирующей и управляющей аппаратурой размещены внутри по меньшей мере одной штанги.

4. Гидродинамический стенд по п.1, отличающийся тем, что прочная камера заполнена ингибитором.

5. Гидродинамический стенд по п.1, отличающийся тем, что демпфирующая полость прочной камеры заполнена инертным газом.

6. Гидродинамический стенд по п.1, отличающийся тем, что прочная камера оснащена клапаном сброса газа или жидкости для их отвода по мере продвижения подводного аппарата при пуске.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности и предназначено для повышения нефтеотдачи продуктивных пластов. .

Изобретение относится к области экспериментальной гидродинамики морского транспорта и касается создания лабораторий для исследований ледовых качеств судов. .

Изобретение относится к испытательным машинам, а конкретно к каплеударным испытательным установкам. .

Изобретение относится к измерительно-испытательной технике и может быть использовано для функционального контроля и испытаний электродных систем скважинных электрогидравлических аппаратов.

Изобретение относится к области экспериментальной гидродинамики. .

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов.

Изобретение относится к экспериментальной гидромеханике, в частности к испытаниям в опытовых бассейнах моделей плавучих морских инженерных сооружений с протяженными якорными системами удержания.

Изобретение относится к области проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах. .

Изобретение относится к области экспериментальных исследований в ледовых опытовых бассейнах и может быть использовано для проектирования винто-рулевых комплексов судов и средств их защиты ото льда путем создания в нем условий проведения модельного эксперимента, подобных натурным.

Изобретение относится к области двигателестроения и может быть использовано в испытаниях топливной аппаратуры дизельных двигателей

Изобретение относится к испытательной технике, в частности к методам и средствам проверки технического состояния скважинных установок электроцентробежных насосов (УЭЦН) при проведении мероприятий по техническому обслуживанию

Изобретение относится к области экспериментальной техники и может быть использовано для испытаний различных подводных объектов и пусковых устройств, в частности пусковых устройств торпедных аппаратов

Изобретение относится к области экспериментальной техники для исследований гидродинамики и динамики судов и касается создания опытовых бассейнов с возможностями моделирования в них волнения

Изобретение относится к области экспериментальной гидродинамики морского транспорта

Изобретение относится к области судостроения, касается вопроса экспериментального определения характеристик нестационарных сил, возникающих на элементах судовых движителей

Группа изобретений относится к области гидродинамики, в частности к стендовому оборудованию для моделирования гидроабразивного износа насосов. Способ гидроабразивных испытаний погружных насосов, при котором насос с электродвигателем размещают в подвешенном состоянии, абразивный материал подают с рабочей жидкостью из узла подвода во вращающийся насос. Испытания проводят при частоте вращения насоса, превышающей его номинальную частоту, а узел подвода и испытываемый насос размещают в подвешенном состоянии посредством гибких элементов. Стенд для гидроабразивных испытаний погружных насосов содержит приводной механизм в виде электродвигателя, кинематически соединенный с валом испытываемого насоса, бак, подсоединенный к насосу, узел подачи абразивного материала, узел подвода жидкости, соединительные трубопроводы, узел регулирования расхода и систему измерительных датчиков. Электродвигатель, узел подвода и испытываемый насос размещены в подвешенном состоянии посредством гибких элементов, закрепленных на раме стенда. Технический результат группы изобретений - повышение достоверности и ускорение испытаний. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретения относятся к области судостроения, в частности к экспериментальным методам испытания моделей в опытовых и ледовых бассейнах при проведении испытаний заякоренных объектов, и могут быть использованы для непосредственных измерений инерционных характеристик изучаемой модели. Устройство включает испытуемую модель плавучего объекта, имитатор дна водоема, якорные связи, соединяющие модель с имитатором дна и оснащенные тросовыми динамометрами для измерения в них сил натяжения, и измеритель линейных и угловых перемещений выбранной точки испытуемой модели. Модель выполнена состоящей из двух не равнозначных по массе частей, к одной из которых, имеющей массу, не превышающую 5% общей массы модели, прикреплены модельные якорные линии удержания и которая соединена с остальной частью модели через динамометр, предназначенный для измерения силы взаимодействия между этими частями. Способ включает монтаж модели к имитатору дна водоема с помощью якорной системы удержания, измерение линейных и угловых перемещений выбранной точки модели, натяжения в связях якорной системы удержания с помощью тросовых динамометров и определение жесткостной характеристики связей. Испытания проводят на модели, состоящей из двух не равнозначных по массе частей, соединенных через динамометр между ними, к меньшей части из которых крепят якорные линии удержания. После монтажа модели к имитатору дна водоема измеряют углы подхода якорных линий к корпусу испытуемой модели при отсутствии внешней нагрузки, и в процессе проведения эксперимента измеряют с помощью динамометра усилие, возникающее между упомянутыми частями испытуемой модели. В ходе дальнейшей обработки результатов эксперимента определяют суммарную силу, действующую на модель со стороны якорной системы удержания, после чего определяют расчетным путем инерционные характеристики модели как разность между соответствующими величинами, определенными по показаниям динамометра между частями испытуемой модели и величинами, рассчитанными как суммарная реакция якорных связей. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области испытательной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов. Устройство содержит заполненный жидкостью прочный корпус с днищами, на одном из которых размещен быстроразъемный узел крепления пускового устройства подводного аппарата, направляющие элементы для подводного аппарата и устройство для его торможения, заполненную газом демпфирующую полость, систему уставки давления в демпфирующей полости, измерительно-регистрирующую и управляющую работой стенда аппаратуру и систему поддержания в демпфирующей полости постоянства установочного давления. При этом система поддержания давления содержит расположенный в демпфирующей полости уравнивающий цилиндр с пневматическим приводом, шток которого введен в демпфирующую полость прочного корпуса стенда и связан с поршнем уравнивающего цилиндра, замкнутый объем которого снабжен клапаном уравнивания в нем давления с демпфирующей полостью, а пневматический привод включает ресивер с воздухом высокого давления, программно-управляемый клапан и клапан сброса давления из рабочего объема пневматического привода. Технический результат заключается в обеспечении эффективного поддержания постоянного давления в демпфирующей полости стенда. 1 ил.

Изобретение относится к судостроению и касается проектирования экранопланов. При определении аэродинамических характеристик горизонтального оперения экраноплана с установленными на нем работающими маршевыми двигателями изготавливают геометрически подобную модель горизонтального оперения и двигателей силовой установки. Модель испытывается в опытовом бассейне в прямом движении. Модель крепится на пилоне буксировочной тележки через динамометр, используемый для гидродинамических исследований, в зоне отсутствия вихреобразования от движения тележки. Моделирование струи силовой установки производится моделированием диаметра сопла и тяги. При движении тележки на фиксированной скорости и обдувки горизонтального оперения струями двигателей маршевой силовой установки определяются аэродинамические характеристики при различных сочетаниях углов атаки горизонтального оперения, тяги двигателей, отклонения рулей высоты, что позволяет экспериментально-расчетным способом оперативно определять параметры, являющиеся одним из основных элементов инструкции в обеспечении расчета управляемости на всех эксплуатационных режимах движения экраноплана и в чрезвычайных нестандартных ситуациях. Достигается осуществление полного аэродинамического расчета экраноплана в целом. 3 ил.

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов

Наверх