Способ определения энергии помехи

Изобретение относится к области гидроакустики и радиотехники и может быть использовано для построения систем обнаружения сигнала. Техническим результатом от использования изобретения является обеспечение возможности определения энергии помехи шумового процесса с помощью одного приемника. Для обеспечения этого технического результата производят последовательный во времени прием двух реализаций шумового процесса смеси сигнала и помехи одним приемником, производят дискретизацию шумового процесса, при этом первую и вторую реализации осуществляют в виде n наборов дискретизированных отсчетов, полученных последовательно во времени. Затем осуществляют спектральную обработку первой реализации, для чего каждый из n наборов отсчетов подвергается быстрому преобразованию Фурье, выделение реальной и мнимой частей комплексного спектра шумового процесса для первой реализации; суммирование реальных и мнимых частей спектра по n наборам отсчетов первой реализации, после чего производят идентичную спектральную обработку второй реализации, вычитают из суммы реальных частей n наборов отсчетов первой реализации сумму реальных частей n наборов отсчетов второй реализации. Подобным образом находят разность сумм мнимых частей n наборов отсчетов первой и второй реализации; возводят в квадрат разности реальных частей и мнимых частей спектра, а энергию помехи определяют как результат сложения квадратов этих разностей. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области гидроакустики и радиотехники и может быть использовано для построения систем обнаружения сигнала.

Известен способ определения энергии помехи в шумовом процессе смеси сигнала и помехи (см. стр.106 - Ж.Макс, т.2: Методы и техника обнаружения сигналов при физических измерениях. М.: Мир, 1983 г.), который содержит спектральный анализ шумового процесса смеси электрического сигнала и помехи при работающем механизме, а затем спектральный анализ при выключенном механизме, при котором регистрируется помеха.

Аналогичный способ приведен на с.157 - Б.Голд, Ч.Райбинер. Цифровая обработка сигналов. М.: Сов. радио, 1973 г., где производится вычисление спектра шума как разность двух процессов, один из которых не содержит помехи, а другой исследуемый. При кажущейся простоте эти способы непригодны для большинства случаев, когда невозможно выделить эталонный сигнал.

По технической сущности наиболее близким аналогом предлагаемого способа является способ определения помехи, изложенный в книге Тюрина A.M. Введение в теорию статистических методов в гидроакустике. Л.: 1963 г., ВМОЛА, с.172, в которой рассматривается метод измерения энергии помехи в смеси сигнала и помехи с использованием разности процессов на выходе 2-х приемников.

Способ содержит:

- прием сигнала шумового процесса смеси сигнала и помехи двумя независимыми приемниками;

- вычитание процесса, принятого одним приемником из процесса, принятого другим приемником;

- полосовую фильтрацию полученной разности шумового процесса;

- детектирование полученной разности;

- определение энергии помехи в результате накопления разности за несколько циклов измерений.

Этот способ требует наличия двух приемников, а в гидроакустике двух отдельных и идентичных антенн, что дорого и не всегда выполнимо, поэтому основным недостатком указанного способа определения помехи является невозможность определение помехи при приеме шумового процесса смеси сигнала и помехи одним приемником.

При использовании цифровой техники в качестве полосовой фильтрации используют спектральный анализ на основе процедуры быстрого преобразования Фурье (БПФ), которая обеспечивает выделение и измерение энергетического спектра входного процесса (Применение цифровой обработки сигналов. М.: Мир, 1990 г., с.296).

Результатом оценки энергии помехи прототипом является сигнал, определяемый разностью временных шумовых процессов, снимаемых с двух половин антенны, с дальнейшим детектированием разности и накоплением по нескольким временным реализациям огибающих разностного процесса. Такая процедура определения энергии помехи возможна только в том случае, если приемники разнесены на интервал корреляции, больший, чем интервал корреляции помехи, но меньший, чем интервал корреляции сигнала. Тогда сигналы, которые находятся на выходе одного приемника, и сигнал с выхода второго приемника равны по величине и в разностном канале вычитаются, в результате при вычитании остается только помеха. При этом необходимым условием является идентичность обоих каналов приема и обработки.

На практике создание двух идентичных приемных каналов, особенно в гидроакустике, где под приемниками понимаются две отдельные и идентичные гидроакустические антенны, разнесенные на определенные расстояния, не всегда является возможным. Наличие двух приемников (гидроакустических антенн) является неоправданно дорогим.

Задачей изобретения является снижение затрат на реализацию способа.

Техническим результатом от использования изобретения является обеспечение возможности определения энергии помехи шумового процесса смеси сигнала и помехи с помощью одного приемника.

Для решения поставленной задачи в способе определения энергии помехи, содержащий прием двух реализаций шумового процесса смеси сигнала и помехи, получение разности этих реализаций, полосовую фильтрацию и накопление полученной разности, введены новые признаки, а именно: производят последовательный во времени прием двух реализаций шумового процесса смеси сигнала и помехи одним приемником, производят дискретизацию шумового процесса смеси сигнала и помехи; при этом первую и вторую реализации осуществляют в виде n наборов дискретизированных отсчетов, полученных последовательно во времени, сначала осуществляют спектральную обработку первой реализации, для чего для каждого из n наборов дискретизированных отсчетов первой реализации производят быстрое преобразование Фурье, выделение реальной и мнимой частей комплексного спектра шумового процесса смеси сигнала и помехи первой реализации; суммирование реальных частей спектра и суммирование мнимых частей спектра по n наборам дискретизированных отсчетов первой реализации, после чего производят спектральную обработку второй реализации, для чего для каждого из n наборов дискретизированных отсчетов второй реализации производят быстрое преобразование Фурье, выделение реальной и мнимой частей комплексного спектра шумового процесса смеси сигнала и помехи второй реализации, суммирование реальных частей спектра по n наборам дискретизированных отсчетов второй реализации, суммирование мнимых частей спектра по n наборам дискретизированных отсчетов второй реализации, вычитают из суммы реальных частей n наборов дискретизированных отсчетов первой реализации сумму реальных частей n наборов дискретизированных отсчетов второй реализации, вычитают из суммы мнимых частей n наборов дискретизированных отсчетов первой реализации сумму мнимых частей n наборов дискретизированных отсчетов второй реализации, возводят в квадрат разности реальных частей спектра n наборов дискретизированных отсчетов первой и второй реализаций, возводят в квадрат разности мнимых частей спектра n наборов дискретизированных отсчетов первой и второй реализаций, а энергию помехи определяют как результат сложения квадратов этих разностей.

Число n наборов дискретизированных отсчетов может быть выбрано исходя из необходимого времени обработки

Поясним достижения указанного результата.

В предлагаемом техническом решении используются фазовые свойства сигнала и помехи. Известно, что фаза помехи распределена равномерно в пределах от 0° до 360° и фазовые соотношения между наборами временных реализаций, разнесенных на интервал времени, больший, чем интервал корреляции для помехи, что практически в реальных условиях всегда имеет место, окажутся независимыми и некогерентными. Фазовые свойства сигнала детерминированы на всем временном интервале наблюдения и когерентно связаны в последовательных во времени наборах дискретизированных отсчетов, последовательно поступающих на систему обработки. Результатом процедуры БПФ является выделение реальной и мнимой частей комплексного спектра, которые затем возводят в квадрат и получают энергетический спектр, содержащий и сигнал и помеху. Для сигнала оценки фазы будут детерминированы для каждой временной последовательности набора дисктретизированных отсчетов, а для помехи оценки фазы будут случайными. Поэтому предлагается использовать стабильность оценки фазы сигнала и случайность оценки фазы помехи. При накоплении реальной и мнимой частей комплексного спектра сигнала и помехи для n дискретизированных наборов первой реализации, положение спектральной составляющей сигнала по оси частот будет детерминировано, при этом происходит суммирование положительных реальных частей ΣRe(+) и суммирование отрицательных реальных частей ΣRe(-). Также происходит накопление мнимой части комплексного спектра для n дискретизированных отсчетов первой реализации смеси сигнала и помехи. Далее накапливаются реальная и мнимая части комплексного спектра для n дискретизированных отсчетов второй реализации. Для сигнала в набранных реализациях реальные и мнимые части первой и второй реализаций будут накапливаться в фазе, и поскольку первая и вторая реализации одинаковы, то и составляющие сигнала в них будут равными. Поэтому, если из суммы реальных частей первой реализации вычесть сумму реальных частей второй реализации, то в разности реальная часть сигнала будет отсутствовать, также будет отсутствовать и мнимая часть сигнала. Поскольку помеха в соседних временных последовательностях некоррелированна, то реальная часть помехи будет складываться некогерентно с реальной частью помехи последующего набора. Аналогично и мнимая часть помехи будет складываться некогерентно с мнимой частью последующих наборов. Если из суммы реальных частей помехи набора первой реализации вычесть сумму реальных частей набора дискретизированных отсчетов второй реализации, то разность не будет равна нулю. Нулю будет равно среднее значение разностного процесса, поскольку среднее значение отдельных составляющих исходного процесса равны нулю. Дисперсия суммарного или разностного процесса будет равна сумме дисперсий составляющих. (A.M.Заездный. Основы расчетов по статистической радиотехнике. М.: Связь, 1969 г., с.256). То же будет получаться для разности мнимых частей наборов дискретизированных отсчетов первой и второй реализаций. В дальнейшем при возведении в квадрат разности реальных частей и разности мнимых частей будет получен энергетический спектр помехи без энергетического спектра сигнала.

Сущность изобретения поясняет фиг.1, на которой изображена блок-схема устройства, реализующего данный способ. Устройство содержит дискретизатор 1 входного сигнала, анализатор 2 спектра, выполненный на процессорах быстрого преобразования Фурье (БПФ), блок 3 выделения последовательности реализаций, который имеет четыре выхода, два из которых соединены с блоками 4-1 и 4-2 вычисления реальной части спектра. Выходы каждого из них соединены через блоки 6-1 и 6-2 суммирования реальных частей комплексного спектра с блоком 8 разности, который через квадратор 10 соединен с первым входом сумматором 12. Два других выхода блока 3 соединены с блоками 5-1 и 5-2 вычисления мнимой части спектра, которые соединены через блоки 7-1 и 7-2 суммирования мнимых частей комплексного спектра с блоком 9 разности и который через квадратор 11 соединен со вторым входом сумматора 12.

Работа устройства, реализующего предложенный способ, осуществляется следующим образом. На вход дискретизатора 1 поступает аналоговый сигнал с выхода одного приемника, содержащий смесь сигнала и помехи. В дискретизаторе 1 происходит преобразование аналогового сигнала в цифровую последовательность. Дискретизированные отсчеты процесса, содержащие сигнал и помеху, поступают на вход анализатора 2, содержащего процессоры БПФ, на выходе которого формируются реальная часть комплексного спектра набора дискретизированных отсчетов входного процесса и его мнимая часть. Эти отсчеты поступают на вход блока 3 определения последовательности реализаций, который обеспечивает коммутацию n наборов последовательных реальных и мнимых дискретизированных отсчетов 1-й реализации и n наборов последовательных реальных и мнимых дискретизированных отсчетов 2-й реализации. Реальная и мнимая части комплексного спектра обрабатываются одинаково параллельными каналами. В сумматоре 6-1 производится суммирование n последовательных по времени наборов реальных частей комплексного спектра первой реализации, а затем в сумматоре 6-2 суммирование n последовательных по времени наборов реальных частей комплексного спектра второй реализации . Накопленные реальные части комплексного спектра первой и второй реализаций временной последовательности поступают на блок 8 разности, где вычитаются один из другого. На выходе блоке 8 формируется реальная часть комплексного спектра помехи . Аналогично, мнимая часть комплексного спектра накапливается в сумматоре 7-1 от n наборов первой реализации и в сумматоре 7-2 от n наборов второй реализации, и накопленные мнимые части комплексного спектра поступают в блок разности 9, где производится вычитание из суммы наборов дискретизированных отсчетов первой реализации мнимых частей комплексного спектра суммы наборов дискретизированных отсчетов второй реализации мнимых частей комплексного спектра. Таким образом, формируется мнимая часть комплексного спектра помехи . Разность реальных частей комплексного спектра помехи возводится в квадрат в блоке 10, а разность мнимых частей комплексного спектра помехи возводится в квадрат в блоке 11. В блоке 12 производится суммирование квадратов реальной части разности и мнимой части разности , что представляет собой энергию помехи по n накоплениям, где n определяется необходимым временем использования полученной оценки.

Таким образом, достигается технический результат обеспечения определения энергии помехи с помощью одного приемника.

1. Способ определения энергии помехи, содержащий прием двух реализаций шумового процесса смеси сигнала и помехи, получение разности этих реализаций, полосовую фильтрацию и накопление полученной разности, отличающийся тем, что производят последовательный во времени прием двух реализаций шумового процесса смеси сигнала и помехи одним приемником, производят дискретизацию шумового процесса смеси сигнала и помехи; при этом первую и вторую реализации осуществляют в виде n наборов дискретизированных отсчетов, полученных последовательно во времени, сначала осуществляют спектральную обработку первой реализации, для чего для каждого из n наборов дискретизированных отсчетов первой реализации производят быстрое преобразование Фурье, выделение реальной и мнимой частей комплексного спектра шумового процесса смеси сигнала и помехи первой реализации; суммирование реальных частей спектра и суммирование мнимых частей спектра по n наборам дискретизированных отсчетов первой реализации, после чего производят спектральную обработку второй реализации, для чего для каждого из n наборов дискретизированных отсчетов второй реализации производят быстрое преобразование Фурье, выделение реальной и мнимой частей комплексного спектра шумового процесса смеси сигнала и помехи второй реализации, суммирование реальных частей спектра по n наборам дискретизированных отсчетов второй реализации, суммирование мнимых частей спектра по n наборам дискретизированных отсчетов второй реализации, вычитают из суммы реальных частей n наборов дискретизированных отсчетов первой реализации сумму реальных частей n наборов дискретизированных отсчетов второй реализации, вычитают из суммы мнимых частей n наборов дискретизированных отсчетов первой реализации сумму мнимых частей n наборов дискретизированных отсчетов второй реализации, возводят в квадрат разности реальных частей спектра n наборов дискретизированных отсчетов первой и второй реализации, возводят в квадрат разности мнимых частей спектра n наборов дискретизированных отсчетов первой и второй реализации, а энергию помехи определяют как результат сложения квадратов этих разностей.

2. Способ по п.1, отличающийся тем, что число n наборов дискретизированных отсчетов выбирается исходя из необходимого времени обработки.



 

Похожие патенты:

Изобретение относится к технике дискретного спектрального анализа и может быть использовано в измерительной технике. .

Изобретение относится к измерительной технике и предназначено для гармонического анализа периодических колебательных процессов, в частности электрических сигналов.

Изобретение относится к способам спектрального анализа электрических сигналов. .

Изобретение относится к радиоастрономии и может использоваться в радиометрах, регистрирующих шумовую температуру или мощность принимаемого широкополосного шумового сигнала в полосе пропускания радиометра.

Изобретение относится к приборостроению и может быть использовано для измерения спектральных характеристик автогенераторов, преимущественно кварцевых, а также в случаях, требующих большого динамического диапазона измерений.

Изобретение относится к области цифровой обработки сигналов и может быть использовано для анализа сигналов различного происхождения. .

Изобретение относится к области измерительной техники и может быть использовано в измерительных системах для измерения амплитуд и частот гармонических составляющих в исследуемых сигналах.

Изобретение относится к оптическим аналоговым устройствам для спектральной обработки изображений, например, поверхности моря, с использованием некогерентного света и может быть применено для решения ряда научно-технических задач, в частности, для измерения спектров изображения шероховатой поверхности, в том числе пространственного спектра волнения водной поверхности в реальном времени.

Изобретение относится к области систем обработки информации и измерительной технике и может быть использовано для определения спектрального состава периодического многочастотного сигнала при решении разнообразных задач передачи информации на расстоянии, контроля работоспособности электротехнических и электромеханических устройств.

Изобретение относится к области обработки информации и измерительной техники, может быть использовано при контроле электротехнических и электромеханических устройств.

Изобретение относится к технике спектрального анализа электрических сигналов

Изобретение относится к способам определения спектра электрических сигналов
Изобретение относится к радиотехнике, а именно к способам точной оценки частоты одиночного гармонического колебания в ограниченном диапазоне

Изобретение относится к радиотехнике и может быть использовано для целей радиоконтроля, радиомониторинга, определения характеристик источников радиоизлучения

Изобретение относится к испытательной технике и может быть использовано для выделения и фильтрации исследуемых сигналов из воспроизводимого стационарного случайного процесса и измерения в реальном времени параметров сигнала. Система обработки сигналов, содержащая перестраиваемый по частоте фильтр, характеризующаяся тем, что в систему введены виброиспытательный комплекс, анализатор, прибор визуального контроля, формирователь нестационарного процесса, источник управляющего сигнала и блок стробирования, при этом фильтр своим первым входом подключен к выходу виброиспытательного комплекса, а выходом соединен с входом прибора визуального контроля, первый и второй выходы которого подключены соответственно к первому и второму входам анализатора, третьим входом соединенного с первым выходом формирователя нестационарного процесса, одновременно подключенного также ко входу виброиспытательного комплекса, причем анализатор своим четвертым входом соединен с первым входом системы, а выходом подключен к ее выходу, причем второй выход формирователя нестационарного процесса соединен с первым входом блока стробирования, выходом подключенного к второму входу фильтра, а вторым входом соединенного с выходом источника управляющего сигнала, входом подключенного к второму входу системы. Технический результат заключается в повышении точности обработки. 3 з.п. ф-лы, 16 ил.

Способ относится к области испытаний и исследований динамических систем. Способ определения амплитудно-фазовых частотных характеристик динамического объекта предполагает проведение анализа завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания и проводится на каждой частоте входного моногармонического сигнала до тех пор, пока средние определяемые значения коэффициентов Фурье выходного сигнала не станут достаточно постоянными, т.е. до тех пор, пока относительные разности между вновь вычисленными средними значениями коэффициентов Фурье выходного сигнала и предыдущими значениями этих параметров не станут по модулю меньше наперед заданного точностного параметра. При этом анализ завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания проводится по нескольким дополнительным гармоникам. В этом случае окончание переходного процесса втягивания динамического объекта в вынужденные периодические колебания определяется числом необходимых периодов для завершения переходного процесса той гармоники, для которой оно является максимальным. Технический результат - повышение точности определения амплитудно-фазовых частотных характеристик. 1 ил.

Изобретение относится к области дистанционного беспробоотборного газоанализа, а именно к способам формирования баз спектральных данных для дистанционных газоанализаторов на основе Фурье-спектрорадиометров. Способ заключается в беспробоотборном определении мгновенных значений концентрации вещества по данным контроля оптической плотности модельного облака на характеристических спектральных линиях в момент регистрации его спектра с использованием лабораторного стенда для создания и контроля концентраций газообразных веществ путем регистрации спектра пропускания модельного облака и расчетом по закону Бугера-Ламберта-Бера на основании значений молярной массы и молекулярного сечения поглощения вещества. Регистрация спектров для базы данных производится при достижении значения оптической плотности облака порядка 1,105÷1,112. Технический результат заключается в обеспечении возможности снижения погрешности при определении спектральных коэффициентов поглощения излучения для веществ из перечня формируемой базы спектральных данных для Фурье-спектрорадиометра. 2 ил.

Предлагаемое устройство относится к области радиоэлектроники и может быть использовано для определения несущей частоты, вида модуляции и манипуляции сигналов, принимаемых в заданном диапазоне частот. Устройство для определения частоты, вида модуляции и манипуляции принимаемых сигналов содержит приемную антенну, входную цепь, блок поиска, усилитель высокой частоты, гетеродин, смеситель, усилитель промежуточной частоты, семь амплитудных детекторов, два видеоусилителя, устройство формирования частотной развертки, ЭЛТ, пять ключей, три фильтра верхних частот, три фильтра нижних частот, два квадратора, два делителя напряжений, два частотных детектора, четыре анализатора спектра, семь блоков сравнения, фазовый детектор, анализатор комплексного спектра, анализатор линейного члена фазового спектра, анализатор симметрии амплитудного спектра, пять преобразователей аналог-код, шесть элементов совпадения И, четыре инвертора, преобразователь цифра-напряжение, умножитель фазы на два, умножитель фазы на четыре, умножитель фазы на восемь. Технический результат - повышение помехоустойчивости панорамного приемника и достоверности проводимых измерений. 6 ил.

Изобретение относится к области дискретного спектрального анализа, к области систем обработки информации и измерительной техники, и может быть использовано для доплеровской фильтрации (выделения) лучевой структуры ионосферных сигналов. Способ включает прием ионосферного сигнала с помощью приемника, усиление и преобразование по частоте, преобразование аналогового сигнала на выходе приемника в цифровую форму с помощью аналого-цифрового преобразователя. При этом снижают промежуточную частоту сигнала до нулевого значения с помощью преобразования Фурье. Формируют элементы корреляционной матрицы A m , p = Y ^ n + m − 1 Y ^ n + p − 1 ∗ ¯ (черта сверху означает суммирование по индексу n) и правого столбца b ^ p = Y ^ n + p − 1 e − i ω t n ¯ векторного уравнения A ^ c ¯ = b ¯ . Определяют элементы c ^ m вектора неопределенных коэффициентов c ¯ , решая в вычислительном устройстве векторное уравнение A ^ c ¯ = b ¯ . Формируют частотную зависимость функционала правдоподобия Δ ( ω ) = 1 1 − ∑ m = 1 M c ^ m Y ^ n + m − 1 ∗ перебирая частоты с заданным шагом в заданном интервале частот. Оценивают частоты доплеровских составляющих ионосферного сигнала и их достоверность по максимумам частотной зависимости функционала правдоподобия Δ(ω). Формируют элементы матрицы A ^ 1 m , p = e i ( ω m − ω p ) t n ¯ и правого столбца b ^ 1 m = Y ^ n e − i ω m t n ¯ векторного уравнения A ^ 1 U ¯ = b ¯ 1 . Оценивают комплексные амплитуды доплеровских составляющих ионосферного сигнала U ^ 1 ÷ U ^ M , решая в вычислительном устройстве векторное уравнение A ^ 1 U ¯ = b ¯ 1 . Технический результат заключается в повышении точности и достоверности оценок доплеровского спектра многолучевых ионосферных сигналов, и в расширении возможностей спектрального анализа в область малых интервалов обработки сигналов, где критерий Рэлея не выполняется. 6 ил.

Изобретение относится к радиотехнике. Техническим результатом является расширение полосы анализа сигналов и возможность проведения анализа в режиме реального времени. Сущность способа заключается в том, что используют обработку исходного сигнала параллельно на нескольких аналого-цифровых преобразователях с различными частотами дискретизации, вычисляют амплитудный спектр по каждой оцифрованной последовательности, далее производят развертку полученных спектров на единую ось частот в зоны Найквиста в порядке, обратном их наложению при дискретизации, выделяют сигналы в спектральной области путем сравнения с заданным порогом амплитудных спектров от каждого АЦП, выбирают спектральные линии от всех АЦП, совпадающих по частотному положению; принятие решения о существовании на этой частоте узкополосного сигнала производят при нахождении линий, совпадающих по положению на частотной оси от всех АЦП. 4 ил.
Наверх