Метод получения пленки диоксида кремния

Изобретение относится к технологии изготовления мощных транзисторов, в частности к методам получения защитных пленок для формирования активных областей p-n переходов. Сущность изобретения: при получении диэлектрической пленки диоксида кремния на поверхности кремниевой подложки формируют слой диэлектрический пленки диоксида кремния за счет горения водорода (H2) и сухого кислорода (O2) в среде азота (N2) при температуре - 980±20°С и расходе газов: N2=400 л/ч; Н2=65 л/ч; O2=650±50 л/ч, разброс толщины пленки составляет - 3,5÷4,0%. Изобретение позволяет получить равномерную и ненарушенную пленку диоксида кремния без примесей при низких температурах.

 

Изобретение относится к технологии изготовления мощных транзисторов, в частности к методам получения защитных пленок для формирования активных областей p-n-переходов.

Известны методы получения защитных диэлектрических пленок: термическое окисление кремния в парах воды, сухое окисление и т.д. [1].

Недостатками этих методов является неравномерность наращивания пленки диоксида кремния на поверхности кремниевых подложек и получения пористого слоя.

Известен комбинированный метод, в который входит два процесса: окисление в парах воды и окисление в сухом кислороде при температуре 1000÷1200°С.

Недостаток этого метода заключается в том, что на поверхности подложек образуется неравномерная пленка диоксида кремния и скорость роста пленки в сухом кислороде меньше, чем в парах воды, а также пленки диоксида кремния SiO2, выращенные во влажном кислороде обладают худшими электрическими и защитными свойствами, чем слои, выращенные в сухом кислороде.

Целью изобретения является получение на поверхности равномерной и ненарушенной пленки диоксида кремния без примесей при низких температурах.

Поставленная цель достигается использованием газовой фазы, в состав которой входят: азот (N2), водород (H2) и кислород (O2).

Сущность способа заключается в том, что на поверхности кремниевой подложки формируют слой диэлектрической пленки диоксида кремния за счет горения водорода и сухого кислорода в среде азота (N2) при расходе газов: N2=400 л/ч; H2=65 л/ч; O2=650±50 л/ч.

Температура рабочей зоны - 980±20°С.

Контроль проводится на установке «MPV-SP». Разброс по толщине диэлектрической пленки диоксида кремния на кремниевых подложках составляет 3,0-3,5%.

Сущность изобретения подтверждается следующими примерами.

ПРИМЕР 1. Технологический процесс проводят в однозонной диффузионной печи типа СДОМ-1/100 при температуре 1000°С и применением кварцевой оснастки. Кремниевые подложки предварительно нагревают до температуры 800±50°С, при расходе азота N2=400 л/ч. Сухое окисление при расходе азота O2=400 л/ч проводят в течение 8 мин. После чего пускают водород на поджиг, расход водорода H2=80 л/ч и кислорода O2 - 800±50 л/ч, а затем происходит горение водорода и кислорода в течение 1 минуты, при котором образуется диэлектрическая пленка диоксида кремния.

Контроль проводится на установке «MPV-SP». Разброс по толщине диэлектрической пленки диоксида кремния на кремниевых подложках составляет 5,0÷5,5%.

ПРИМЕР 2. Способ осуществляют аналогично примеру 1. Процесс проводят при следующем расходе газов, л/ч: N2=400 л/ч; H2=75 л/ч; O2=700±50 л/ч.

Температура рабочей зоны - 980±50°С.

Контроль проводится на установке «MPV-SP». Разброс по толщине полученной пленки окисла кремния на подложках составляет 4,5÷5,0%.

ПРИМЕР 3. Способ осуществляют аналогично примеру 1. Процесс проводят при следующем расходе газов, л/ч: N2=400 л/ч; H2=70 л/ч; O2=700±50 л/ч.

Температура рабочей зоны - 980±20°С.

Контроль проводится на установке «MPV-SP». Разброс по толщине диэлектрической пленки диоксида кремния на кремниевых подложках составляет 4,0÷4,5%.

ПРИМЕР 4. Способ осуществляют аналогично примеру 1. Процесс проводят при следующем расходе газов, л/ч: N2=400 л/ч; H2=65 л/ч; O2=650±50 л/ч.

Температура рабочей зоны - 980±20°С.

Контроль проводится на установке «MPV-SP». Разброс по толщине диэлектрической пленки диоксида кремния на кремниевых подложках составляет 3,5÷4,0%.

Таким образом, предлагаемый метод по сравнению с прототипом позволяет получать на поверхности кремниевой подложки равномерный, чистый без примесей и ненарушенный слой диэлектрической пленки диоксида кремния.

Литература.

1. Технология производства полупроводниковых приборов и интегральных микросхем. Под ред. А.И.Курносова, В.В.Юдина, М., Высшая школа, 1996, стр.387.

Метод получения пленки диоксида кремния, включающий метод получения диэлектрической пленки на поверхности кремниевой подложки, отличающийся тем, что на поверхности подложки формируют слой диэлектрической пленки диоксида кремния за счет горения водорода и сухого кислорода в среде азота (N2) при температуре 980±20°С и расхода газов: N2=400 л/ч; Н2=65 л/ч; O2=650±50 л/ч, разброс толщины составил 3,5÷4,0%.



 

Похожие патенты:

Изобретение относится к технологии получения полупроводниковых приборов и может быть использовано в производстве твердотельных газовых датчиков паров углеводородов.

Изобретение относится к технологии выращивания оксидных слоев и может быть использовано при создании защитных либо пассивирующих покрытий на поверхности металла или полупроводника.
Изобретение относится к технологии получения защитных пленок полупроводниковых приборов и интегральных схем. .

Изобретение относится к технологии арсенид-галлиевой микроэлектроники, в частности к методам электрической пассивации поверхности полупроводниковых соединений и твердых растворов групп АIIIBV, и может быть использовано для снижения плотности поверхностных состояний как на свободной поверхности полупроводника, так и на границе раздела металл-полупроводник и диэлектрик-полупроводник.
Изобретение относится к области нанотехнологий и может быть использовано для изготовления сенсорных датчиков, приборов контроля составов газовых смесей, оптических приборов, в оптоэлектронике, наноэлектронике.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения пленок, содержащих бор на поверхности полупроводниковых материалов.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения пленочных диэлектриков, для маскирования поверхности кремниевых пластин при проведении диффузионных процессов.
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения защитных пленок. .
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления пленок с пониженной дефектностью. .
Изобретение относится к технологии получения полупроводниковых приборов, в частности к способам получения тонкопленочных конденсаторов. .
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур, с пониженной плотностью дефектов

Изобретение относится к технологии полупроводниковой микро- и наноэлектроники, а именно к золь-гель технологии получения сегнетоэлектрических тонких стронций-висмут-тантал-оксидных пленок на интегральных микросхемах, применяемых в частности в устройствах энергонезависимой памяти типа FRAM. Техническим результатом изобретения является обеспечение однородности изготавливаемой сегнетоэлектрической пленки, упрощение контроля над процессом приготовления золя и увеличение срока хранения исходного золя, снижение энергоемкости процесса и снижение его стоимости. В золь-гель способе формирования сегнетоэлектрической стронций-висмут-тантал-оксидной пленки готовят исходные растворы хлорида стронция, хлорида висмута и хлорида тантала. Каждый полученный раствор подвергают ультразвуковой обработке в течение 20-40 минут, выдерживают в течение суток при комнатной температуре и фильтруют. Смешивают растворы в один и выдерживают его в течение суток при комнатной температуре. Образуется пленкообразующий раствор, который наносят на подложку, сушат подложку с нанесенным пленкообразующим раствором при температуре 50-450°С и отжигают пленку в присутствии кислорода при температуре 700-800°С в течение 1-2 часов. В результате получают сегнетоэлектрическую стронций-висмут-тантал оксидную пленку. 5 ил.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности p-n-переходов. Изобретение обеспечивает получение равномерной поверхности, уменьшение температуры и длительности процесса. В способе защиты p-n-переходов на основе окиси бериллия защита поверхности p-n-переходов осуществляется на основе пленки окиси бериллия вакуумным катодным распылением. Создание защитной пленки проводится в печи при температуре 1000°C, температура кристалла 600°С. Окись бериллия в виде порошка, а в качестве несущего агента используется галоген HBr. Устанавливается перепад температур между источником окиси бериллия и полупроводниковым кристаллом. Расстояние между источником окиси бериллия и кристаллом равно 12 см. Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина пленки окиси бериллия δ=0,8±0,1 мкм.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты кристаллов p-n-переходов. Техническим результатом изобретения является достижение стабильности и уменьшение температуры и длительности процесса. В способе защиты поверхности кристаллов p-n переходов на поверхность кристалла наносят слой защитного стекла, состоящего из смеси микропорошков со спиртом, в состав которого входят: 60% окиси кремния - SiO2 и 28% окиси бора - B2O3. После термообработки в вакууме при температуре 280±10°C в течение 18±2 минут образуется стеклообразная пленка толщиной 0,45±0,5 мкм. Далее производится ее сплавление с нижним слоем стекла при температуре 600°C.
Использование: для получения мощных кремниевых транзисторов, в частности к способам получения фосфоро-силикатных стекол для формирования p-n переходов. Сущность изобретения заключается в том, что кремниевые пластины загружают в кварцевую лодочку, помещенную в кварцевую трубу, находящуюся внутри нагретой однозонной печи СДОМ-3/100. Через трубу пропускается поток газа носителя - водород (H2), а фосфорный ангидрид (P2O5) помещают в зону источника и нагревают до температуры 300°C, при которой происходит испарение источника. Процесс проводят при следующем расходе газов: О2=40 л/ч, азот N2=500 л/ч. Технический результат: обеспечение возможности осуществления процесса диффузии фосфора с применением твердого источника диффузанта - фосфорный ангидрид (P2O5) при температуре 1050°C и времени - 40 минут, и получить RS=140±10 Ом/см, при котором обеспечивается уменьшение разброса значений поверхностной концентрации по всей поверхности кремниевой пластины и снижение длительности и температуры процесса.

Изобретение относится к технологии микроэлектроники. В способе получения слоя диоксида кремния, включающем загрузку полупроводниковой подложки в реактор, нагрев полупроводниковой подложки до необходимой температуры в диапазоне 300-500°C, подачу паров алкоксисилана, преимущественно - тетраэтоксисилана, и окислителя в виде смеси кислорода и озона, с концентрацией последнего в первом в диапазоне 0-16 вес.%, поддержание рабочего давления в реакторе в диапазоне 0,5-760 мм рт.ст., процесс осаждения осуществляют циклами, состоящими из последовательных импульсов паров алкоксисилана и окислителя, разделенными импульсами продувочного инертного газа, причем длительность импульсов составляет 0,1-20 секунд, а количество циклов рассчитывают из необходимой толщины слоя и скорости осаждения слоя диоксида кремния за один цикл. Изобретение позволяет обеспечить равномерный рост слоев диоксида кремния в условиях реализации процесса, исключающего взаимодействие исходных реагентов или их непрореагировавших остатков в реакторе, и обеспечивает взаимодействие реагентов на нагретой поверхности подложки в адсорбционном слое. 7 ил., 1 табл.

Изобретение относится к области низкотемпературных технологий микро- и наноэлектроники и может быть использовано для создания радиационно-стойких интегральных схем и силовых полупроводниковых приборов. Оксид кремния получают путем нагрева кремния в атмосфере кислорода до температуры 250-400°C потоком электронов плотностью в интервале 2,5·1013-1014 см-2·с-1 с энергией 3,5-11 МэВ. Технический результат изобретения состоит в получении высококачественных низкотемпературных оксидов кремния с характерными для высокотемпературных термических оксидов параметрами: плотностью поверхностных состояний (Nss менее 1011 см-2), максимальной величиной критического поля (Екр более 2·105 В/см), минимальным разбросом пороговых напряжений (∆Vt менее 0,1 В) и повышенной радиационной стойкостью (более 106 рад). 1 ил.
Изобретение относится к технологии получения полупроводниковых приборов и интегральных схем, в частности к способам формирования диэлектрических пленок на основе окиси титана. Изобретение позволяет сформировать на поверхности подложки диэлектрическую пленку окиси титана при низких температурах. В способе формирования диэлектрической пленки для защиты поверхности р-n-переходов формирование диэлектрической пленки окиси титана осуществляется на поверхности подложек в печи вакуумным катодным распылением при температуре 800°С и температуре подложки 500°С. В качестве несущего агента служит галоген НВr. Расстояние между источником окиси титана и подложкой 9 см. Толщина формируемой диэлектрической пленки окиси титана 0,7±0,1 мкм.
Изобретение относится к технологии изготовления полупроводниковых приборов и кремниевых транзисторов, в частности к способам защиты поверхности кристаллов. Изобретение обеспечивает получение равномерной поверхности, уменьшение температуры и длительности процесса. Защита поверхности полупроводниковых кристаллов осуществляется на основе пленки окиси алюминия вакуумным катодным распылением. Создание защитной пленки проводится в печи при температуре 1050°С, температура кристалла равна 850°С. Окись алюминия используют в виде порошка, в качестве несущего агента используют галоген НВr. Через рабочую камеру пропускают инертный газ и устанавливают перепад температур между источником окиси алюминия и полупроводниковым кристаллом. Расстояние между источником окиси алюминия и кристалла 15 см. Контроль толщины защитной пленки осуществляется с помощью микроскопа МИИ-4. Толщина пленки окиси алюминия δ=0,9±0,1 мкм.
Изобретение относится к технологии изготовления полупроводниковых приборов и кремниевых транзисторов, в частности к способам защиты поверхности кристаллов. Изобретение обеспечивает сокращение длительности процесса. В способе защиты поверхности р-n переходов процесс ведут в печи вакуумным катодным распылением при температуре в печи 1100°С и температуре кристалла 700°С. Источником служит окись титана в виде порошка, несущим агентом служит галоген НВr. Расстояние между источником окиси титана и кристаллом 10 см. Толщина формируемой пленки δ=1,1±0,1 мкм.
Наверх