Способ сравнительной оценки структур сетей связи



Способ сравнительной оценки структур сетей связи
Способ сравнительной оценки структур сетей связи
Способ сравнительной оценки структур сетей связи
Способ сравнительной оценки структур сетей связи
Способ сравнительной оценки структур сетей связи
Способ сравнительной оценки структур сетей связи

 


Владельцы патента RU 2450338:

Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военная академия связи имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации (Минобороны России) (RU)

Изобретение относится к области информационной безопасности сетей связи и может быть использовано при сравнительной оценке структур сети связи на предмет их устойчивости к отказам, вызванным воздействиями случайных и преднамеренных помех. Техническим результатом является повышение достоверности результатов сравнительной оценки структур сетей связи путем учета динамики воздействия на узлы сети связи случайных и преднамеренных помех. Способ содержит: вычисление комплексного показателя безопасности для каждого узла сети связи, выделение массивов памяти для хранения идентификаторов абонентов и альтернативных маршрутов пакетов сообщений, выделение альтернативных маршрутов пакетов сообщений для каждой пары альтернативных подключений к сети, сравнение значения комплексного показателя безопасности узла сети связи, с предварительно заданным минимальным допустимым значением, вычисление показателя доступности для каждого «опасного» узла сети связи, сравнение значения показателя доступности узла сети связи с предварительно заданным минимальным допустимым значением, вычисление времени достижения выполнения условий для каждого варианта подключения абонентов и ранжирование альтернативных вариантов подключения абонентов сети связи по значению величины, и выбирают из них вариант с максимальным значением. 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к области информационной безопасности сетей связи (СС) и может быть использовано при сравнительной оценке структур СС на предмет их устойчивости к отказам, вызванным воздействиями случайных и преднамеренных помех.

Известен способ оценивания СС в соответствии с условиями занятости сетевых ресурсов, реализованный в «Способе и системе продвижения транспортных потоков с гарантированным качеством сервиса (QoS) в сети, работающей с протоколом IР» по патенту РФ №2271614 МПК H06L 12/38, опубл. 10.03.2006 г.

Способ заключается в том, что выбор маршрута доставки пакетов в сетях связи выполняют менеджеры ресурсов сети доставки на уровне управления каналом передачи, аналогично функции для услуг, требующих гарантированного качества сервиса QoS. Для прохождения транспортных потоков согласно пути, назначенного менеджером ресурсов в сети доставки, контролируют пограничные маршрутизаторы в соответствии с условиями занятости сетевых ресурсов. При этом назначение путей прохождения потоков осуществляют с помощью технологии многоуровневого стека меток.

Недостатком данного способа является высокая вероятность выбора маршрута с более низким уровнем качества, обусловленная отсутствием адаптации к изменениям структуры сети связи.

Известен также способ сравнительной оценки структур СС, описанный в патенте РФ №2331158 МПК H04L 12/28, опубл. 10.08.2008 г.

Способ заключается в том, что предварительно задают параметры СС и формируют ее топологическую схему, вычисляют комплексный показатель безопасности каждого узла СС. Подключают к СС абонентов, у которых формируют сообщения, включающие адреса абонентов и их идентификаторы. Передают сформированные сообщения, принимают их. Из принятых сообщений выделяют и запоминают идентификаторы и адреса абонентов, а также запоминают информацию о наличии связи между абонентами и узлами СС, по которым осуществляют информационный обмен. Используя полученные результаты, осуществляют выбор наиболее безопасных маршрутов в СС из совокупности всех возможных маршрутов связи между абонентами и доведение безопасных маршрутов до абонентов СС.

Недостатком данного способа является относительно низкая достоверность результатов сравнительной оценки структур СС при увеличении количества узлов связи. Низкая достоверность обусловлена: большими временными и ресурсными затратами, необходимыми для получения исходных данных по большому количеству узлов СС; увеличением комбинаторной сложности решения задачи поиска безопасного маршрута при большом количестве узлов СС; снижением чувствительности показателя безопасности маршрута, вызванное тем, что при увеличении количества узлов СС будет расти число маршрутов с близким значением показателя безопасности маршрута. Кроме этого, данный способ имеет узкую область применения, так как не предусматривает адаптации маршрута к изменениям структуры СС. Необходимость адаптации обусловлена тем, что под воздействием помех на структуру СС значения комплексных показателей безопасности узлов могут изменяться.

Наиболее близким по своей технической сущности к заявленному является способ сравнительной оценки структур СС, описанный в патенте РФ №2408928 МПК G06F 21/20, H04L 12/28, опубл. 10.01.2011 г.

Способ-прототип заключается в том, что предварительно задают параметры СС и формируют ее топологическую схему. Вычисляют комплексный показатель безопасности ПК для каждого узла СС. Подключают к СС абонентов, у которых формируют сообщения, включающие адреса абонентов и их идентификаторы. Передают сформированные сообщения, принимают их. Из принятых сообщений выделяют и запоминают идентификаторы и адреса абонентов, а также информацию о наличии связи между абонентами и узлами СС, по которым осуществляют информационный обмен. В предварительно заданные исходные данные в качестве параметров СС дополнительно задают: минимальное допустимое значение комплексного показателя безопасности ПКmin для узлов СС, альтернативные варианты подключения абонентов к СС. Выделяют массивы памяти для хранения их идентификаторов и альтернативных маршрутов пакетов сообщений. Из сформированной топологической схемы СС выделяют альтернативные маршруты пакетов сообщений для каждой пары альтернативных подключений к СС абонентов и запоминают альтернативные маршруты пакетов сообщений для каждого j-го варианта подключения абонентов, где j=1, 2,…. Сравнивают значение комплексного показателя безопасности ПКi i-го узла СС, где i=1, 2, 3,…, с предварительно заданным минимальным допустимым значением ПКmin. При ПКiКmin запоминают i-й узел как «опасный», а в противном случае, при ПКi≥ПКmin запоминают узел как «безопасный». После этого вычисляют критическое соотношение «опасных» и «безопасных» узлов pjk для каждого j-го варианта подключения абонентов, при котором смежные «опасные» узлы образуют цепочки, исключающие обмен между абонентами. Для этого выбирают случайным образом из каждого ранее запомненного варианта подключения абонентов pj-ю часть узлов из общего их количества и запоминают их как «опасные». Из смежных «опасных» узлов формируют связанные цепочки и запоминают их. Затем последовательно увеличивают долю «опасных» узлов на величину Δp и повторяют формирование связанной цепочки до выполнения условий pj=pjk. Ранжируют альтернативные варианты подключения абонентов СС по значению величины pjk и выбирают из них вариант с максимальным значением pjk.

Известный способ-прототип устраняет некоторые из недостатков аналогов за счет учета перспективного снижения значений комплексных показателей безопасности узлов связи, вызванных воздействием на каналы связи и узлы СС случайных и преднамеренных помех, что обеспечивает повышение достоверности результатов сравнительной оценки структур СС при увеличении количества узлов связи и в условиях воздействия на каналы связи и узлы СС случайных и преднамеренных помех.

Недостатком указанного способа-прототипа является относительно низкая достоверность результатов сравнительной оценки структур СС, связанная с отсутствием учета динамики воздействия на каналы связи и узлы СС случайных и преднамеренных помех. Низкая достоверность обусловлена тем, что в способе-прототипе не учитывают время достижения критического соотношения «опасных» и «безопасных» узлов pjk для каждого j-го варианта подключения абонентов.

Целью заявленного технического решения является разработка способа сравнительной оценки структур СС, обеспечивающего повышение достоверности результатов сравнительной оценки структур СС путем учета динамики воздействия на каналы связи и узлы СС случайных и преднамеренных помех.

Заявленное техническое решение расширяет арсенал средств данного назначения.

Поставленная цель достигается тем, что в известном способе сравнительной оценки структур СС, заключающемся в том, что предварительно задают параметры сети связи и формируют ее топологическую схему, вычисляют комплексный показатель безопасности ПК для каждого узла сети связи. Задают минимальное допустимое значение комплексного показателя безопасности ПКmin для узлов сети связи и альтернативные варианты подключения к ней абонентов. Выделяют массивы памяти для хранения идентификаторов абонентов и альтернативных маршрутов пакетов сообщений. Из сформированной топологической схемы сети связи выделяют альтернативные маршруты пакетов сообщений для каждой пары альтернативных подключений к сети связи абонентов и запоминают альтернативные маршруты пакетов сообщений для каждого j-го варианта подключения абонентов, где j=1, 2,…. Сравнивают значение комплексного показателя безопасности ПКi i-го узла сети связи, где i=1, 2, 3,…, с предварительно заданным минимальным допустимым значением ПКmin. При ПКiКmin запоминают i-й узел как «опасный», в противном случае при ПКi≥ПКmin запоминают узел как «безопасный». После этого вычисляют критическое соотношение «опасных» и «безопасных» узлов pjk для каждого j-го варианта подключения абонентов. После вычисления критического соотношения «опасных» и «безопасных» узлов pjk дополнительно вычисляют показатель доступности ПД для каждого «опасного» узла сети связи и задают минимальное допустимое значение показателя доступности узла сети связи ПДimin. Сравнивают значение показателя доступности ПДi i-го узла сети связи с предварительно заданным минимальным допустимым значением ПДimin. При ПДi≥ПДimin запоминают i-й узел как «доступный», в противном случае, при ПДiДimin запоминают узел как «недоступный». Затем последовательно уменьшают значение показателя доступности узла сети связи ПДi на величину Δd до выполнения условий ПДiДimin и вычисляют длительность промежутка времени ТДi, в течение которого выполнялось условие ПДi≥ПДimin. Кроме того, вычисляют время tjk достижения выполнения условий pj=pjk для каждого j-го варианта подключения абонентов. Затем ранжируют альтернативные варианты подключения абонентов сети связи по значению величины tjk и выбирают из них вариант с максимальным значением tjk.

Для вычисления критического соотношения «опасных» и «безопасных» узлов pjk для каждого j-го варианта подключения абонентов выбирают случайным образом из каждого ранее запомненного варианта подключения абонентов pj-ю часть узлов из общего их количества и запоминают их как «опасные», из смежных «опасных» узлов формируют связанные цепочки и запоминают их, затем последовательно увеличивают долю «опасных» узлов на величину Δp и повторяют формирование связанной цепочки до выполнения условий pj=pjk, когда смежные «опасные» узлы образуют цепочки, исключающие обмен между абонентами.

Благодаря новой совокупности существенных признаков в заявленном способе достигается учет динамики воздействия на каналы связи и узлы СС случайных и преднамеренных помех, что обеспечивает достижение сформулированного технического результата - повышение достоверности результатов сравнительной оценки структур СС путем учета времени достижения критического соотношения «опасных» и «безопасных» узлов pjk для каждого j-го варианта подключения абонентов.

Заявленные объекты изобретения поясняются чертежами, на которых показаны:

фиг.1 - блок-схема алгоритма, иллюстрирующего способ;

фиг.2 - пример фрагмента топологической схемы СС;

фиг.3 - пример совокупности альтернативных маршрутов пакетов сообщений в СС между корреспондирующими абонентами;

фиг.4 - вариант регулярной структуры СС с различным количеством «опасных» узлов;

фиг.5 - иллюстрация альтернативных структур размерностью L=1000000 узлов связи (1000 на 1000 узлов связи);

фиг.6 - графики, иллюстрирующие динамику увеличения количества «недоступных» узлов СС, в двух альтернативных вариантах структуры СС.

Реализация заявленного способа объясняется следующим образом. Информационный обмен между абонентами сетей связи (СС) осуществляют маршрутизацией пакетов сообщений через последовательность транзитных узлов сети.

Определение маршрута усложняется в случаях, когда между парой абонентов существует множество альтернативных маршрутов. При этом выбор маршрута осуществляют в узлах сети (маршрутизаторах) операторов связи. На каждом из узлов сети маршрут определяют самостоятельно. В качестве критериев выбора маршрутов выступают, например, номинальная пропускная способность; загруженность каналов связи; задержки, вносимые каналами; количество промежуточных транзитных узлов сети; надежность каналов и транзитных узлов сети.

Совокупность альтернативных маршрутов пакетов сообщений между корреспондирующими абонентами составляет структуру СС. Для обоснованного выбора варианта структуры СС осуществляют сравнительную оценку альтернативных структур СС на предмет их устойчивости к отказам, вызванным воздействиями случайных (явления техногенного характера, такие как сбои, отказы и аварии систем обеспечения узла СС) и преднамеренных (умышленное использование дефектов программного обеспечения) помех. Эту оценку в способе-прототипе осуществляют путем учета перспективного снижения значений комплексных показателей безопасности узлов связи, не учитывая, однако, динамику воздействия на каналы связи и узлы СС случайных и преднамеренных помех. Низкая достоверность известных способов оценки альтернативных структур, в том числе и способа-прототипа, обусловлена тем, что отсутствует учет времени достижения критического соотношения «опасных» и «безопасных» узлов pjk для каждого j-го варианта подключения абонентов. На устранение указанного недостатка направлен заявленный способ.

Для этого в заявленном способе, также как и в прототипе, предварительно задают параметры СС (бл. 1 на фиг.1) и формируют ее топологическую схему (бл. 3 на фиг.1). В качестве параметров СС задают идентификаторы узлов сети, наличие линий связи между ними, параметры безопасности узлов СС (такие как тип его оборудования, версию установленного на нем программного обеспечения, принадлежность узла государственной или частной организации и другие). Дополнительно задают минимальное допустимое значение показателя доступности узла сети связи ПДmin. Под показателем доступности узла СС понимается, например, коэффициент его исправного действия, который вычисляют по формуле ПД=((T-TП)/T)·100%, где TП - длительность промежутка времени, когда абонентам СС недоступны от узла услуги с требуемым качеством (время простоя); T - общее время работы узла СС. Воздействие на узел СС случайных и преднамеренных помех создает дополнительную (нештатную) нагрузку на процессы связи и устройства, их реализующие (узлы СС). В результате TП - длительность промежутка времени, когда абонентам недоступны от узла СС услуги с требуемым качеством (время простоя) - увеличивается, а показатель доступности узла СС - уменьшается. Экспериментальные исследования и опыт эксплуатации СС показали, что значение ПД должно задаваться в интервале 0,6<ПД<1.

На фиг.2 представлен пример фрагмента топологической схемы СС с указанием идентификаторов узлов связи (смотри, например, узел СС с IP-адресом 85.235.192.121) и корреспондирующих абонентов (смотри, например, Абонент №1, имеющий IP-адрес 91.191.179.129). Из сформированной топологической схемы СС выделяют (бл. 4 на фиг.1) альтернативные маршруты пакетов сообщений между абонентами СС, узлы которой характеризуются идентификаторами. Для каждой пары альтернативных подключений к СС корреспондирующих абонентов существует конечное множество альтернатив маршрутов пакетов сообщений между ними. Совокупность альтернативных маршрутов пакетов сообщений в СС между корреспондирующими абонентами составляет структуру СС (фиг.3). Альтернативные маршруты пакетов сообщений для каждого j-го варианта подключения абонентов, где j=1, 2,… и идентификаторы абонентов запоминают в выделенных для этого (бл. 2 на фиг.1) массивах памяти (бл. 5 на фиг.1).

Вычисляют комплексный показатель безопасности ПК для каждого узла СС (бл. 6 на фиг.1). Под комплексным показателем i-го, где i=1, 2, 3,… узла СС ПКi, понимается нормированное численное значение свертки параметров безопасности, характеризующее способность узла СС противостоять угрозам безопасности. Порядок вычисления ПКi известен и описан, например, в патенте РФ №2331158. Расчет ПКi вычисляют путем суммирования или перемножения или как среднее арифметическое значение его параметров безопасности. Кроме этого, в предварительно заданные исходные данные в качестве параметров СС дополнительно задают минимальное допустимое значение комплексного показателя безопасности ПКmin для узлов СС и альтернативные варианты подключения абонентов к СС. Значение ПКmin задают директивно с учетом реализованных функций безопасности, как это регламентировано в ГОСТ Р ИСО/МЭК 15408-3 - 2002 года, «Информационная технология. Методы и средства обеспечения безопасности. Критерии оценки безопасности информационных технологий. Часть 3. Требования доверия к безопасности», как минимальный уровень доверия к производителю оборудования. Экспериментальные исследования и опыт эксплуатации СС показали, что значение Пmin должно задаваться в интервале 0,5<ПК<1.

Далее сравнивают (бл. 7 на фиг.1) значение ранее вычисленного комплексного показателя безопасности ПКi i-го узла СС, где i=1, 2, 3,…, с предварительно заданным минимальным допустимым значением ПКmin. При ПКiКmin запоминают i-й узел как «опасный» (бл. 9 на фиг.1), а в противном случае, то есть при ПКi≥ПКmin, запоминают узел как «безопасный» (бл. 8 на фиг.1). При большом количестве узлов связи в структуре СС, как правило, существуют альтернативные варианты маршрутизации пакетов сообщений. Надежность и живучесть систем связи обеспечивают как резервированием каналов связи, так и известными адаптивными способами маршрутизации, реализуемыми в оборудовании операторов связи.

Пусть, для примера, вариант структуры СС представляет собой регулярную структуру, в узлах которой размещены узлы связи (фиг.4), а pj-я часть узлов из общего их количества является «опасными» (узлы черного цвета на фиг.4а), исключающими возможность прохождения пакетов сообщений между абонентами №1 и №2. Количество pj-й части узлов равно суммарному количеству узлов, запомненных как «опасные» на этапе сравнения значений вычисленных комплексных показателей безопасности i-ых узлов СС с предварительно заданным минимальным допустимым значением ПКmin. Из смежных «опасных» узлов формируют (бл. 10 на фиг.1) связанные цепочки и запоминают их (узлы и связи между ними черного цвета на фиг.4б). Из приведенного примера, где pj=0,3, видно, что при представленной на фиг.4а и фиг.4б pj-й части «опасных» узлов из общего их количества существует большое количество альтернативных вариантов маршрутизации пакетов сообщений между абонентами СС (узлы белого цвета и связи между ними на фиг.4б), три из которых показаны на рисунке стрелками.

Для того чтобы учесть перспективное снижение значений комплексных показателей безопасности узлов связи, вызванное воздействием на каналы связи и узлы СС случайных и преднамеренных помех, необходимо увеличить долю «опасных» узлов на величину Δp. Величину Δр задают исходя из требуемой точности результатов расчетов в интервале Δp=0,01÷0,2. Из рисунка, представленного на фиг.4в, видно, что при представленной на фиг.4в pj-й части «опасных» узлов, где pj =0,5, из общего их количества существует только 4 альтернативных варианта маршрутизации пакетов сообщений между абонентами СС (узлы и связи между ними белого цвета на фиг.4г), показанные на рисунке стрелками.

Для того чтобы вычислить (бл. 11 на фиг.1) критическое соотношение «опасных» и «безопасных» узлов pjk для каждого j-го варианта подключения абонентов, необходимо последовательно увеличивать долю «опасных» узлов на величину Δp (где, например, Δp=0,01) до выполнения условий pj=pjk, при котором смежные «опасные» узлы образуют цепочки, исключающие обмен между абонентами. Рисунки, представленные на фиг.5, иллюстрируют образование структур из связанных между собой «опасных» узлов на примере структуры СС, реализованной как регулярная структура, размерностью L=1000000 узлов связи (1000 на 1000 узлов связи) и связностью каждого узла, равной четырем. При этом на фиг.5 выполнены условия pi=pjk=0,593 (фиг.5а) и pj>pjk=0,594 (фиг.5б).

После вычисления критического соотношения «опасных» и «безопасных» узлов pjk для каждой альтернативной структуры СС дополнительно вычисляют показатель доступности ПД (бл. 12 на фиг.1) для каждого «опасного» узла СС и сравнивают значение показателя доступности ПДi i-го узла СС (бл. 13 на фиг.1) с предварительно заданным минимальным допустимым значением ПДimin. При ПДi≥ПДimin запоминают i-й узел как «доступный» (бл. 14 на фиг.1), в противном случае, при ПДiДimin, запоминают узел как «недоступный» (бл. 17 на фиг.1). Затем последовательно уменьшают значение показателя доступности (бл. 15 на фиг.1) узла СС ПДi на величину Δd до выполнения условий ПДiДimin. Величину Δd задают исходя из требуемой точности результатов расчетов в интервале Δd=0,01÷0,1.

Вычисляют (бл. 16 на фиг.1) длительность промежутка времени TДi, в течение которого выполнялось условие ПДi≥ПДimin.

Помехи, инжектированные в одной или нескольких точках СС, снижают доступность узлов СС. Графики, представленные на фиг.6б и фиг.6г, иллюстрируют изменение количества узлов СС во фронте действия помехи. Например, в точке «Д» на графике фиг.6б количество узлов СС во фронте действия помехи равно 35 на момент времени t1≈90 сек. Это означает, что на девяностой секунде с начала наблюдения одновременно на 35-ти узлах СС действуют помехи, уменьшая значение показателей доступности ПДi на величину Δd. А за время tjk (бл. 18 на фиг.1) количество pj «недоступных» узлов СС достигнет значения рjk (точки «Е1» и «Е2» на фиг.6а и фиг.6в). Графики, представленные на фиг.6, иллюстрируют динамику увеличения количества «недоступных» узлов СС в двух альтернативных вариантах структуры СС.

Затем ранжируют (бл. 19 на фиг.1) альтернативные варианты подключения абонентов сети связи по значению величины tjk. Для этого на шкале времени отмеряют значения tjk альтернативных (конкурирующих) структур СС. Так, например, из графиков на фиг.6б и фиг.6г: t1k≈260 сек, t2k =225 сек.

Из двух альтернативных структур выбирают (бл. 20 на фиг.1) вариант с максимальным значением tjk:t1k ≈260 сек.

Таким образом достигается повышение достоверности результатов сравнительной оценки структур СС путем учета динамики воздействия на узлы СС случайных и преднамеренных помех, что и обеспечивает достижение сформулированного технического результата. Причем сравнение структур СС осуществляют с учетом времени достижения критического соотношения «опасных» и «безопасных» узлов pjk для каждого j-го варианта подключения абонентов.

1. Способ сравнительной оценки структур сетей связи, заключающийся в том, что предварительно задают параметры сети связи и формируют ее топологическую схему, вычисляют комплексный показатель безопасности Пк для каждого узла сети связи, задают минимальное допустимое значение комплексного показателя безопасности Пкmin для узлов сети связи и альтернативные варианты подключения к ней абонентов, выделяют массивы памяти для хранения идентификаторов абонентов и альтернативных маршрутов пакетов сообщений, из сформированной топологической схемы сети связи выделяют альтернативные маршруты пакетов сообщений для каждой пары альтернативных подключений к сети связи абонентов и запоминают альтернативные маршруты пакетов сообщений для каждого j-го варианта подключения абонентов, где j=l, 2,…,сравнивают значение комплексного показателя безопасности Пкi i-го узла сети связи, где i=l, 2, 3,…, с предварительно заданным минимальным допустимым значением Пкmin и при Пкiкmin запоминают i-й узел как «опасный», в противном случае, при Пкi≥Пкmin запоминают узел как «безопасный», после чего вычисляют критическое соотношение «опасных» и «безопасных» узлов для каждого j-го варианта подключения абонентов, отличающийся тем, что после вычисления критического соотношения «опасных» и «безопасных» узлов дополнительно вычисляют показатель доступности Пд для каждого «опасного» узла сети связи, задают минимальное допустимое значение показателя доступности узла сети связи Пдimin, сравнивают значение показателя доступности Пдi i-го узла сети связи с предварительно заданным минимальным допустимым значением Пдimin и при Пдi≥Пдimin запоминают i-й узел как «доступный», в противном случае, при Пдiдimin запоминают узел как «недоступный», затем последовательно уменьшают значение показателя доступности узла сети связи Пдi на величину Δd до выполнения условий Пдiдimin и вычисляют длительность промежутка времени Тд, в течение которого выполнялось условие Пдi≥Пдimin , и, кроме того, вычисляют время достижения выполнения условий для каждого j-го варианта подключения абонентов, затем ранжируют альтернативные варианты подключения абонентов сети связи по значению величины и выбирают из них вариант с максимальным значением

2. Способ по п.1, отличающийся тем, что для вычисления критического соотношения «опасных» и «безопасных» узлов для каждого j-го варианта подключения абонентов выбирают случайным образом из каждого ранее запомненного варианта подключения абонентов pj-ю часть узлов из общего их количества и запоминают их как «опасные», из смежных «опасных» узлов формируют связанные цепочки и запоминают их, затем последовательно увеличивают долю «опасных» узлов на величину Δp и повторяют формирование связанной цепочки до выполнения условий , когда смежные «опасные» узлы образуют цепочки, исключающие обмен между абонентами.



 

Похожие патенты:

Изобретение относится к области информационной безопасности цифровых систем связи и может быть использовано в распределенных вычислительных сетях (ВС). .

Изобретение относится к области защиты контента. .

Изобретение относится к абстрагированию политики контроля доступа и преобразованию в собственные представления механизмов проверки доступа. .

Изобретение относится к вычислительной технике, а именно к области конструирования единицы данных, которая включает в себя информацию о состоянии буфера. .

Изобретение относится к области информационных технологий, более конкретной областью использования являются компьютерные сети предприятий и организаций. .

Изобретение относится к системам и способам безопасности вычислительных средств и более конкретно к системам и способам проверки веб-ресурсов на наличие вредоносных, потенциально опасных и нежелательных компонент и предназначено для решения проблемы эффективного и оперативного детектирования фактов или возможности заражений веб-ресурсов.

Изобретение относится к компьютерным системам, а именно системам противодействия многократному использованию лицензионного ключа к компьютерному приложению. .

Изобретение относится к удаленному администрированию персональных компьютеров в рамках сети. .

Изобретение относится к области вычислительной техники и может быть использовано для анализа состояния защищенности, мониторинга и управления безопасностью автоматизированных систем.

Изобретение относится к классу интеллектуальных контроллеров, использующих принцип обучения с подкреплением, и может использоваться для создания систем управления объектами, работающими в недетерминированной среде.

Изобретение относится к средствам автоматизированного моделирования в сетевой среде. .

Изобретение относится к вычислительной технике. .

Изобретение относится к вычислительной технике и может быть использовано для построения высоконадежных отказоустойчивых интегрированных бортовых управляющих комплексов в космической, авиационной, ядерной, химической, энергетической и других отраслях.

Изобретение относится к средствам использования сетевова кэша. .

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов. .

Изобретение относится к вычислительной технике и может быть использовано при создании программного обеспечения управляющих вычислительных систем. .

Изобретение относится к интеллектуальным контроллерам, использующим принцип обучения с подкреплением, и может использоваться для управления сложными системами в недетерминированной среде.

Изобретение относится к оптимизации микропроцессорной архитектуры
Наверх