Способ подачи воды

Изобретение предназначено для использования в системе водоподготовки при подпитке питательной водой второго контура ядерной энергетической установки в стояночном режиме, работающей при поддержании собственным теплом на жидкометаллическом теплоносителе в режиме переменных нагрузок. Сущность изобретения заключается в том, что периодически, в течение суток, производят ввод в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура с последующим пуском на малых оборотах насоса воды второго контура. При этом осуществляют предварительную подачу воды из напорной трубы через насос в раздающую камеру котловой воды испарителя с привязкой к номинальному уровню воды в сепараторе, затем уравнивают температуру воды сепаратора и испарителя снижением давления в сепараторе. После пуска на малых оборотах насоса осуществляют управление темпом роста температуры воды второго контура, увеличивая давление в сепараторе подачей пара необходимых параметров. Техническим результатом является исключение появления термоциклических напряжений в наиболее уязвимом узле теплообменного оборудования, что приведет к увеличению ресурса эксплуатации и надежности работы ядерной энергетической установки в целом. 2 ил.

 

Изобретение относится к теплообменной технике и предназначено для использования в системе водоподготовки при подпитке питательной водой второго контура в стояночном режиме при поддержании ядерной энергетической установки (ЯЭУ) собственным теплом, работающей на жидкометаллическом теплоносителе в режиме переменных нагрузок.

Известно устройство для защиты теплообменника от коррозионно-термических повреждений, содержащее втулку, присоединенную к экранирующему элементу, причем последний выполнен в виде эквидистантно расположенных дисков, скрепленных через прокладки посредством болтов, причем один из дисков жестко присоединен к втулке, а другой снабжен обтекателем, обращенным внутрь нее / Александровский Ю.В. и др. Устройство для защиты теплообменника от коррозионно-термических повреждений. SU, а.с.№1112223, F22В 37/22. Приоритет - 11.01.83. Опубл. бюллетень изобретений №33, 07.09.1984 - аналог /.

Недостатком указанного технического решения является то, что статистика опыта конструирования теплообменников и тепловые расчеты последних показывают, что независимо от давления, расхода, температуры жидкости при выходе из корпуса теплообменника термоциклические напряжения не возникают, в связи с чем установка этого устройства внутри теплообменника и для выхода жидкости не требуется. Кроме того, на патрубке теплообменника клапаны не устанавливаются, а уплотнительный материал в технике может быть: плотная бумага, резина, паронит, фторопласт, никель, терморасширенный графит и другие виды, но в научно-технической литературе неизвестны факты их использования в подобных конструкциях.

Известно защитное устройство теплообменных труб, закрепленных в трубной доске, содержащее цилиндрическую вставку, часть которой размещена в теплообменной трубе, а часть выступает над трубной доской, причем вставка установлена в трубе с образованием кольцевого зазора и снабжена на наружной поверхности кольцевыми выступами, контактирующими с трубой, расстояние между которыми превышает толщину трубной доски, а вокруг выступающей на последней части вставки в плоскости, параллельной трубной доске, установлен экран / Емельянов В.И. и др. Защитное устройство теплообменных труб. SU, а.с. №817396, F28F 19/06. Приоритет - 27.04.79. Опубл. бюллетень изобретений №12, 30.03.1981 - прототип /.

Недостатком этого технического решения является крайне узкая, из-за габаритных размеров, область применения, так как укрепление пучка теплообменных труб в трубной доске осуществляется с очень малыми межосевыми расстояниями - перешейками, соизмеримыми с толщиной стенок самих труб. Кроме того, элементы устройства создают большую величину ничем неоправданных гидравлических сопротивлений, а место их максимальной концентрации всегда связано с соответствующей величиной концентрации термоциклических напряжений.

Технический результат предлагаемого изобретения - исключение термоциклических напряжений в сварных швах испарителя, соединяющих трубы с трубной доской последнего, увеличение ресурса эксплуатационной надежности ЯЭУ в целом.

Указанный технический результат достигается тем, что способ подачи воды, преимущественно из сепаратора в раздающую камеру котловой воды испарителя с последующей ее прокачкой через трубный пучок испарителя второго циркуляционного контура при поддержании ЯЭУ в горячем состоянии собственным теплом, заключается в том, что периодически, в течение суток, производят ввод в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ с последующим пуском на малых оборотах насоса МПЦ воды второго контура, причем после ввода в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ осуществляют предварительную подачу воды из напорной трубы через насос МПЦ в раздающую камеру котловой воды испарителя с привязкой к номинальному уровню воды в сепараторе, затем уравнивают температуру воды сепаратора и испарителя снижением давления в сепараторе, после пуска на малых оборотах насоса МПЦ осуществляют управление темпом роста температуры воды второго контура, увеличивая давление в сепараторе подачей пара необходимых параметров.

Изложенная сущность изобретения поясняется чертежами, где

на фиг.1 представлена пневмогидравлическая схема ЯЭУ;

на фиг.2 - продольный разрез камеры котловой воды испарителя.

Способ подачи воды осуществляется на ЯЭУ, работающей на жидкометаллическом теплоносителе в режиме переменных нагрузок, включающей реактор 0 с активной зоной 1, проведение ядерной реакции деления в которой осуществляется с помощью приводов регулирующих стержней 2. Далее, по тракту жидкометаллического теплоносителя следует пароперегреватель 3, испаритель 4, центробежный насос 5, и вновь происходит возврат в объем реактора 0. Движение котловой воды второго контура осуществляется из сепаратора 6, предназначенного в качестве емкости для хранения соответствующего объема котловой воды и выполнения функции осушки пара. После подпитки сепаратора 6 водой и смешения ее с объемом воды сепаратора 6 образуется котловая вода сепаратора 6, которая за счет насоса многократно принудительной циркуляции (МПЦ) 7 поступает в раздающую камеру 8 котловой воды испарителя 4, далее, минуя трубчатку испарителя 4, поступает вновь в сепаратор 6, который за счет сепарационных устройств осуществляет осушку пароводяной смеси и направляет осушенный пар в пароперегреватель 3 с последующей подачей на турбину 9, откуда через конденсатор 10 вновь поступает в сепаратор 6, подпитываемый периодически из-за протечек в конденсаторе 10 подпиточной водой.

Способ подачи воды осуществляют следующим образом.

При поддержании ЯЭУ в горячем состоянии собственным теплом возникает необходимость подогрева жидкометаллического теплоносителя для исключения замерзания последнего в чехлах системы управления и защиты активной зоны 2 в районе верхнего уровня, так как в этом случае ЯЭУ будет неуправляемой. Для этого производят ввод в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ, но для отбора излишне поступающего тепла и исключения повреждения соответствующего оборудования осуществляют подключение второго контура МПЦ. В результате осуществления циркуляции всего объема жидкометаллического теплоносителя первого контура происходит уравнивание его температуры. Но при поступлении достаточно большого объема котловой воды с невысокой температурой из напорного трубопровода сепаратора 6 в раздающую камеру испарителя 8 в сварных швах труб с трубной доской испарителя 8 могут иметь место большие величины термоциклических напряжений, приводящие к возникновению трещин в перешейках трубной доски и, как следствие, к межконтурному разуплотнению. Для исключения этого повреждения котловую воду из напорного трубопровода сепаратора 6 небольшими объемами пропускают через насос МПЦ 7 до тех пор, пока уровень котловой воды в сепараторе 6 достигнет номинальной отметки, далее снижают давление в сепараторе 6, чтобы температуры котловой воды в сепараторе 6 и в испарителе 4 сравнялись. После этого производят пуск на малых оборотах насоса МПЦ 7 и осуществляют управление темпом роста температуры котловой воды сепаратора 6, увеличивая давление в сепараторе 6 подачей пара необходимых параметров.

Применение способа подачи воды с предлагаемой последовательностью технологических операций исключает появление термоциклических напряжений в наиболее уязвимом узле теплообменного оборудования - трубная доска испарителя - и, как следствие, приведет к увеличению ресурса эксплуатационной надежности работы ЯЭУ в целом.

Способ подачи воды преимущественно из сепаратора в раздающую камеру котловой воды испарителя с последующей ее прокачкой через трубный пучок испарителя второго циркуляционного контура при поддержании ЯЭУ в горячем состоянии собственным теплом, заключающийся в том, что периодически, в течение суток, производят ввод в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ с последующим пуском на малых оборотах насоса МПЦ воды второго контура, отличающийся тем, что после ввода в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ осуществляют предварительную подачу воды из напорной трубы через насос МПЦ в раздающую камеру котловой воды испарителя с привязкой к номинальному уровню воды в сепараторе, затем уравнивают температуру воды сепаратора и испарителя снижением давления в сепараторе, после пуска на малых оборотах насоса МПЦ осуществляют управление темпом роста температуры воды второго контура, увеличивая давление в сепараторе подачей пара необходимых параметров.



 

Похожие патенты:

Изобретение относится к энергоустановке с замкнутым контуром, которая вырабатывает электричество за счет тепла, получаемого от высокотемпературного ядерного реактора.

Изобретение относится к способам регулирования параметров ядерного реактора и может быть использовано при регулировании ядерных энергетических установок с водо-водяными реакторами под давлением с газовыми системами компенсации.

Изобретение относится к ядерной энергетике и может быть использовано при эксплуатации АЭС на водо-водяных реакторах с удлиненным топливным циклом. .

Изобретение относится к энергетике. .

Изобретение относится к анализу и оценке безопасности технологических процессов и может быть использовано, в частности, для выполнения анализа и оценки безопасности при управлении АЭС.

Изобретение относится к технике ядерных реакторов, а именно к способам улучшения радиационной обстановки на АЭС и снижения дозовых нагрузок на обслуживающий персонал.

Изобретение относится к ядерным энергетическим установкам теплоснабжения, в которых осуществляется авторегулирование тепловой мощности в активной зоне реактора в зависимости от сезонных и суточных колебаний количества тепловой энергии, потребляемой потребителем.

Изобретение относится к энергетике, а именно к энергосистемам переменного электрического тока, в состав которых входят атомные электростанции с реакторами ВВЭР-1000.

Изобретение относится к способам расхолаживания водоохлаждаемого реактора при полном обесточивании атомной электростанции (АЭС). АЭС содержит паропроизводящую установку с ядерным энергетическим водоохлаждаемым реактором, пароэнергетическую турбогенераторную установку, дополнительную паровую турбину, систему производства и хранения водорода и кислорода, систему расхолаживания паропроизводящей установки. Расхолаживание реактора обеспечивается тем, что при полном обесточивании пар, генерируемый в паропроизводящей установке за счет остаточных тепловыделений в активной зоне реактора, перегревается и пополняется в необходимом количестве в пароводородном перегревателе путем сжигания водорода и впрыска воды. Затем пар направляется в дополнительную паровую турбину, в которой вырабатывается электроэнергия, необходимая для электроснабжения собственных нужд АЭС и останова энергоблока в плановом режиме. Технический результат - возможность расхолаживания водоохлаждаемого реактора в штатном режиме при полном обесточивании АЭС без использования аварийных систем. 1 ил.

Изобретение относится к области энергетического машиностроения и может быть использовано в атомной энергетике. Способ маневра мощностью ядерного энергоблока с газотурбинным энергопреобразователем включает согласованное изменение мощности ядерного реактора и наполнения второго контура газом при неизменных температурах в ядерном реакторе и сохранении экономичности ядерного энергоблока в диапазоне нагрузок. По сигналу из электрической сети об уровне потребляемой мощности изменяют уровень мощности ядерного энергоблока с помощью автоматической системы управления мощностью ядерного энергоблока (6) до уровня, соответствующего уровню нагрузки в сети, путем сбалансированного изменения плотности нейтронного потока в активной зоне (7), расхода теплоносителя первого контура (4) и давления газа второго контура (5) по сигналам автоматической системы управления мощностью ядерного энергоблока (6), передаваемым по линиям с обратной связью (11) управления плотностью нейтронного потока, циркуляцией теплоносителя первого контура, давлением газа второго контура и расходом теплоносителя системы охлаждения. Технический результат состоит в повышении экономичности и надежности ядерного энергоблока. 2 н. и 4 з.п. ф-лы, 2 ил.

Изобретение относится к мониторингу объектов атомной энергетики. Технический результат - определение оценки риска объекта атомной энергетики. Устройство для мониторинга риска содержит запоминающее устройство для хранения, по меньшей мере, одного набора минимальных сечений отказов МСО и значений вероятностей каждого события в каждом МСО и устройство ввода информации, выполненное с возможностью ввода в него информации об изменениях состояния объекта; блок формирования, по меньшей мере, одной матрицы МСО; запоминающее устройство для хранения указанной, по меньшей мере, одной матрицы МСО; блок формирования, по меньшей мере, одной параметрической матрицы; запоминающее устройство для хранения указанной, по меньшей мере, одной параметрической матрицы; блок изменения элементов указанной, по меньшей мере, одной параметрической матрицы; и блок оценки риска. 3 н. и 10 з.п. ф-лы, 2 ил.

Изобретение относится к двухконтурным АЭС с турбинами, работающими на насыщенном паре. Парогазовая установка двухконтурной АЭС содержит реактор 12, основной парогенератор 11, паровую турбину с цилиндрами высокого (ЦВД) 1 и низкого давления (ЦНД) 2, соединенными между собой паропроводом с включенным в него сепаратором-пароперегревателем 3, конденсатор 4, электрогенераторы 5, конденсатный 6 и питательный 8 насос, подогреватель низкого 7 и высокого 9 давления и газовую турбину 15 с утилизационным парогенератором 17, подключенным по греющей стороне к тракту отработавших газов 16 газовой турбины 15. Утилизационный парогенератор 17 с трубопроводом греющего пара 20 подключен по нагреваемой стороне к трубопроводу отбора основного конденсата 19, при этом дополнительный подогрев питательной воды осуществляется в пароводяном подогревателе промежуточным паровым теплоносителем, генерируемым в утилизационном парогенераторе 17 газовой турбины 15. Технический результат - устранение гидравлических и тепловых потерь водяного и газового трактов, а также инерционности регулирования нагрузки паровой турбины и повышение эффективности использования тепла уходящих газов газовой турбины. 1 ил.

Настоящее изобретение относится к ядерной энергетической установке (ЯЭУ). ЯЭУ содержит первичный контур (10), содержащий газ, проходящий через ядерный реактор (12), через первый теплообменник (14) и через газодувку (16'). Вторичный контур (17'), содержащий неконденсирующийся газ, проходит через первый теплообменник (14), и через турбину (18) и компрессор (22), установленные на одном валу (24'). Газодувка приводится в действие валом. Газ в первичном и вторичном контурах одинаковый, и давление во вторичном контуре автоматически регулируется давлением в первичном контуре. Технический результат - продолжение работы газодувки при аварийном отключении реактора. 5 з.п. ф-лы, 6 ил.

Изобретение относится к электротехнике. Технический результат состоит в повышении коэффициента мощности. В системе источника питания для компенсации электромагнитного насоса, который выполняет функцию повышения коэффициента мощности, параллельно электромагнитному насосу предусмотрен механизм (10) источника питания как у синхронной машины во время нормальной работы установки. В механизме (10) источника питания для компенсации электромагнитного насоса предусмотрено устройство (45) с постоянным магнитом статора возбудителя, которое может переключать возбудитель между невозбужденным состоянием и возбужденным состоянием. Устройство (45) с постоянным магнитом статора возбудителя содержит постоянные магниты (15a) статора возбудителя, пружины (16), которые прикладывают силу к постоянным магнитам (15a) статора возбудителя в направлении положения, обращенном к обмотке (15b) ротора возбудителя, и электромагнитные соленоиды (20), которые обеспечивают перемещение постоянных магнитов (15a), статора возбудителя в положения, в которых они не обращены к обмотке (15b) ротора возбудителя при сопротивлении силе, приложенной пружинами (16). 2 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах автоматизированного контроля и управления АЭС для построения управляющих систем безопасности (УСБ) АЭС. УСБ содержит множество идентичных каналов безопасности, каждый канал включает станции ввода вывода сигналов технологического процесса, станции приоритетного управления исполнительными механизмами, контроллер автоматизации средств безопасности, шину ввода вывода средств безопасности и соединен с другими каналами безопасности с помощью перекрестных дуплексных оптоволоконных связей. Процессорный модуль автоматизации средств безопасности каждого канала безопасности соединен с ПМА СБ других каналов безопасности с помощью перекрестных связей, выполненных на основе межпроцессорных интерфейсов МПИ типа "точка-точка", построенных на базе интерфейса Ethernet и коммуникационного протокола уровня данных. Технический результат - повышение надежности многоканальной УСБ, устранение выдачи ложных команд управления и защиты на исполнительные устройства, повышение эффективности мажоритарного резервирования, расширение функций дистанционного управления и диагностирования с блочного и резервного пунктов управления и верхнего уровня системы нормальной эксплуатации, сокращение времени восстановления системы и повышение готовности. 2 з.п. ф-лы, 7 ил.

Изобретение относится к расхолаживанию водоохлаждаемого реактора при полном обесточивании. Пар, получаемый в парогенераторе за счет энергии остаточного тепловыделения активной зоны, через быстродействующую редукционную установку направляется в дополнительную паротурбинную установку 17, в которой вырабатывает необходимую электроэнергию для электроснабжения собственных нужд станции. При этом избыточная часть генерируемого пара направляется в смешивающий подогреватель 11, где подогревает воду, поступающую из бака холодной воды 13, полученная горячая вода поступает в бак горячей воды 10 и используется для подогрева питательной воды путем смешения, когда энергии остаточного тепловыделения становится недостаточно, для генерации необходимого количества пара. Технический результат - обеспечение расхолаживания реактора при полном обесточивании, а в штатном режиме - получение дополнительной электроэнергии за счет теплоты, аккумулированной в часы провала электрической нагрузки. 1 ил.

Предлагаемый способ управления теплосиловой установкой относится к области электроэнергетики и может быть использован на атомных электрических станциях (АЭС). Технический результат заключается в высокой маневренности установки при ее упрощении в целом и, как следствие, сокращение сроков окупаемости теплосиловой установки. Поставленная техническая задача решается тем, что в теплосиловой установке, использующей, например атомное или углеводородное, топливо, содержащей, по крайней мере, один контур рабочего тела и турбину с электрогенератором на валу, подключенным к энергосистеме, устанавливают заданную активную мощность электрогенератора, формируют задание на активную мощность, в соответствии с которым отбирают часть мощности от заданной мощности электрогенератора и используют эту отобранную часть мощности для дополнительного нагрева рабочего тела контура, одновременно пропорционально отобранной части мощности снижают расход топлива, а разность между заданной мощностью электрогенератора и указанной отобранной частью мощности отдают в энергосистему. 3 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к способам повышения маневренности и безопасности АЭС. В эксплуатационном режиме в период ночного провала электрической нагрузки, газотурбинная установка (ГТУ) 12 отключается, дополнительная паротурбинная установка 17 работает на пониженном режиме за счет незначительного снижения расхода свежего пара на основную турбоустановку 1. В пиковые часы электрической нагрузки включается в работу ГТУ 12, уходящие газы направляются в котел утилизации (КУ) 13. После питательного насоса 7 часть питательной воды направляется в КУ 13, нагревается там и подается дожимным насосом 14 в тракт питательной воды и, смешиваясь с основным потоком, подается в парогенератор. В результате уменьшения расхода через ПВД 9 уменьшаются отборы пара из основной паровой турбоустановки 1 на подогрев питательной воды. Избыток пара, полученный за счет снижения расхода на отборы, через устройство парораспределения 16 направляется на дополнительную паровую турбоустановку 17. Технический результат - выработка дополнительной энергии на АЭС в эксплуатационном режиме посредством газотурбинной и паротурбинной установок, способных обеспечить электроснабжение собственных нужд АЭС при аварии. 1 ил.

Изобретение относится к теплообменной технике и предназначено для использования в системе водоподготовки при подпитке питательной водой второго контура в стояночном режиме при поддержании ядерной энергетической установки собственным теплом, работающей на жидкометаллическом теплоносителе в режиме переменных нагрузок

Наверх