Способ растворения мокс-топлива

Изобретение относится к способам растворения топлива, которое представляет собой смесь оксидов урана и плутония. Способ заключается в растворении МОКС-топлива в растворе азотной кислоты при одновременном присутствии в растворе ионов фтора и гадолиния при следующих концентрациях: азотной кислоты (6-9) моль/л, фторида натрия (0,05-0,08) моль/л и нитрата гадолиния в пересчете на гадолиний (1,3-1,5) г/л. Изобретение обеспечивает полное растворение смешанного уран-плутониевого топлива без образования осадков и ядерную безопасность процесса растворения. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к способам растворения топлива, которое представляет собой смесь оксидов урана и плутония.

Известно, что PuO2 трудно растворяется в растворах азотной кислоты. Добавление плавиковой кислоты ускоряет растворение. Например, известен способ растворения РuО2 в смеси кислот: 10 М NНО3 - 0,05 М HF (Плутоний / Справочник под ред. О.Вика, том 1, М.: Атомиздат, 1971. - С.23).

Известен способ растворения уран-плутониевого топлива в азотной кислоте, содержащей фтор-ионы (Плутоний / Справочник под ред. О. Вика, том 1, М.: Атомиздат, 1971. - С.414). Растворение твердого раствора UO3 - РuО2 протекает достаточно полно при длительном кипячении в 16 М HNО3, содержащей 0,05-0,25 М фтор-ионов. Затем раствор фильтруют и нерастворимый остаток возвращают в растворитель для повторной обработки. Недостатком способа является возможность получения ядерно-опасных растворов плутония.

Известен способ растворения оксидного облученного ядерного топлива в растворе азотной кислоты в аппаратах растворения непрерывного действия барабанного типа (Синев Н.М. Экономика ядерной энергетики: Основы технологии и экономики производства ядерного топлива. Экономика АЭС: Учеб. Пособие для вузов. - 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1987. - С.346). Способ выбран за прототип. Для обеспечения ядерной безопасности в азотнокислый раствор добавляют гадолиний в качестве нейтронного поглотителя или комбинируют ядерно-безопасную геометрию аппарата с поглотительными вставками. Сначала происходит преимущественное растворение диоксида урана по реакции:

UO2+4НNО3 → UO2(NО3)2+2NO2+2Н2О.

Для более полного растворения плутония вводятся дополнительные операции растворения «нерастворившихся остатков» с введением в раствор азотной кислоты фтор-иона.

Недостатком способа является то, что растворение уран-плутониевого МОКС топлива осуществляют сначала в растворе азотной кислоты и гадолиния без введения фтор-иона, при этом плохо растворяется диоксид плутония, а затем в растворе азотной кислоты в присутствии фтор-иона, ускоряющего растворение диоксида плутония, но уже без гадолиния, т.к. фтор-ион реагирует с гадолинием с образованием фторида гадолиния, выпадающего в осадок.

Одним из условий применения гадолиния в качестве нейтронного поглотителя в растворах ядерноделящихся материалов (плутония, урана, обогащенного изотопом уран-235) является его равномерное распределение в растворе. При растворении МОКС-топлива фтор-содержащими растворами азотной кислоты гадолиний не должен образовывать осадки, то есть должен оставаться в растворе.

Фториды редкоземельных элементов относятся к числу очень малорастворимых соединений. Произведение растворимости GdF3 равно 6,7×10-17. Растворимость фторидов РЗЭ в растворах сильных кислот незначительна [Аналитическая химия редкоземельных элементов и иттрия. М.: Наука, 1966, с.76-77].

Неизвестна и степень снижения химической активности фторсодержащих растворов азотной кислоты по отношению к МОКС-топливу при введении в них гадолиния, связывающего фтор-ион в комплекс.

Задачей изобретения является растворение смешанного оксидного уран-плутониевого (МОКС) топлива без образования осадков фторида гадолиния, обеспечивающего в растворенном состоянии ядерную безопасность растворов.

Поставленную задачу решают тем, что в способе растворения МОКС-топлива в растворе азотной кислоты с использованием фтор-иона и гадолиния растворение осуществляют при одновременном присутствии в растворе ионов фтора и гадолиния при следующих концентрациях в растворе: азотной кислоты (6-9) моль/л, фторида натрия (0,05-0,08) моль/л и нитрата гадолиния в пересчете на гадолиний (1,3-1,5) г/л.

Растворяют топливо состава: диоксид природного урана UO2 - 74-76 мас.%; диоксид оружейного плутония PuО2 - 24-26 мас.%.

Растворение осуществляют в течение трех суток при температуре 20°С, после чего к нерастворившемуся остатку приливают новую порцию раствора.

Способ осуществляют следующим образом.

Растворяют топливо состава: диоксид природного урана UO2 - 74-76 мас.%; диоксид оружейного плутония РuО2 - 24-26 мас.%, которое было получено плазмохимической денитрацией раствора азотнокислых солей урана и плутония.

Для растворения 15 навесок МОКС-топлива массой 286 мг каждая с содержанием U - 191,8 мг и Рu - 62,8 мг приготовили исходные растворы, содержащие азотную кислоту, нитрат гадолиния и фторид натрия. К каждой навеске МОКС-топлива приливали 10 мл исходного раствора заданного состава и выдерживали при температуре 20-25°С 3 суток. Полученный первый раствор декантировали и на остаток МОКС-топлива приливали новую порцию в 10 мл того же исходного раствора. Выдержку продолжали до полного растворения навески - получали второй раствор.

Состав растворов, их устойчивость к образованию осадков трифторида гадолиния, продолжительность растворения МОКС-топлива приведены в таблице.

№ оп. Состав исходного раствора Потери Gd c осадком, мас.% Содержание в первом растворе, г/л Содержание во втором растворе, г/л Общая продолжительность растворения, сутки
[HNO3], моль/л [NaF], моль/л [Gd],г/л
U Pu U Pu
1 0 0,08 1,5 100 * * * * >30
2 0,5 0,08 1,5 43 * * * * >30
3 1,0 0,08 1,5 0 * * * * >30
4 3,0 0,08 1,5 0 * * * * >30
5 6,0 0,08 1,5 0 18,3 5,2 0,8 1,1 6,0
6 8,0 0,08 1,5 0 18,6 5,4 0,6 0,9 5,8
7 9,0 0,08 1,5 0 18,8 5,6 0,4 0,7 5,5
8 10,0 0,08 1,5 2,3 19,0 5,8 0,2 0,5 5,0
9 12,0 0,08 1,5 9,6 * * * * 4,5
10 6,0 0,05 1,3 0 18,0 5,1 0,8 1,2 7,0
11 6,0 0,05 1,5 0 * * * * 7,0
12 6,0 0,08 1,3 0 * * * * 6,0
13 9,0 0,05 1,3 0 18,7 5,5 0,5 0,8 5,8
14 9,0 0,05 1,5 0 * * * * 5,8
15 9,0 0,08 1,3 0 * * * * 5,5
* - концентрацию не определяли

Осадки фторида гадолиния отсутствовали в растворах, содержащих: [НNO3]=1,0-9,0 моль/л; [NaF]=0,05-0,08 моль/л и [Gd]=1,3-1,5 г/л, при этом полное растворение навесок МОКС-топлива в течение приемлемого времени (нескольких суток) произошло при [NНO3]=6-9 моль/л. Полученные объединенные растворы 1 и 2 не содержали осадков фторидов гадолиния. При [NНО3]≤3,0 моль/л растворение не закончилось и за 30 суток.

Таким образом, в растворах состава: [НNО3]=(6-9) моль/л; [NaF]=(0,05-0,08) моль/л; [Gd]=(1,3-1,5) г/л фторид гадолиния находится в растворенном состоянии; растворение смешанного уран-плутониевого топлива в этих растворах проходит полностью в течение приемлемого времени (нескольких суток); обеспечивается ядерная безопасность процесса растворения.

1. Способ растворения МОКС-топлива в растворе азотной кислоты с использованием фтор-иона и гадолиния, отличающийся тем, что растворение осуществляют при одновременном присутствии в растворе ионов фтора и гадолиния при следующих концентрациях в растворе: азотной кислоты (6-9) моль/л, фторида натрия (0,05-0,08) моль/л и нитрата гадолиния в пересчете на гадолиний (1,3-1,5) г/л.

2. Способ по п.1, отличающийся тем, что растворяют топливо состава: диоксид природного урана UO2 - 74-76 мас.%; диоксид оружейного плутония PuO2 - 24-26 мас.%, которое было получено плазмохимической денитрацией раствора азотнокислых солей урана и плутония.

3. Способ по п.1, отличающийся тем, что растворение осуществляют в течение трех суток при температуре 20-25°С, после чего к нерастворившемуся остатку приливают новую порцию раствора.



 

Похожие патенты:

Изобретение относится к способам и устройствам, обеспечивающим разделение многокомпонентного потока плазмы по массам, и может быть использовано для получения изотопов и выделения химических элементов.

Изобретение относится к способам и устройствам для электромагнитного плазменного разделения химических элементов, изотопов и может быть использовано при выделении элементов или групп элементов из многокомпонентной смеси, производстве стабильных и радиоактивных изотопов химических элементов.

Изобретение относится к ядерному топливному циклу, к технологии изотопного восстановления регенерированного урана и может быть использовано при производстве низкообогащенного урана (НОУ) для топлива атомных станций.

Изобретение относится к ядерному топливному циклу, а именно к способам переработки на каскаде газовых центрифуг загрязненного вредными изотопами 232U, 234 U, 236U уранового сырья.

Изобретение относится к технологии рециклирования ядерных энергетических материалов. .
Изобретение относится к технологии переработки твердого облученного ядерного топлива (ОЯТ) в виде разнородных урансодержащих топливных композиций (металлических, карбидных, оксидных и др.) с целью его дальнейшего возврата в ядерно-топливный цикл.
Изобретение относится к способам регенерации оборотного экстрагента и может быть использовано в технологии переработки облученного ядерного горючего. .

Изобретение относится к экстракционным процессам, в частности к экстракционному аффинажу урана, и может быть использовано в технологии переработки ядерного топлива, концентратов урана и урансодержащих возвратных изделий.

Изобретение относится к области переработки отработавшего ядерного топлива. .

Изобретение относится к ядерной энергетике и касается технологии получения смешанного диоксида урана и плутония (UO 2-PuO2) для изготовления ядерного топлива. .
Изобретение относится к технологии получения сорбентов для очистки гексафторида урана, получаемого из облученного ядерного топлива (ОЯТ), от гексафторида плутония.

Изобретение относится к электролизерам для растворения оксидов урана, плутония или смешанных оксидов урана и плутония в азотной кислоте с использованием двухвалентного серебра и может быть использовано для извлечения урана (плутония) из отходов различных производств ядерно-топливного цикла.

Изобретение относится к области химической технологии и может быть использовано при получении плутония высокой степени чистоты. .

Изобретение относится к устройствам для разделения и глубокой очистки радиоактивных элементов, обладающих различной способностью к образованию амальгам, и может найти применение в радиохимической промышленности для выделения радиоактивных изотопов, используемых в медицине, в аналитической химии для выделения анализируемого элемента.
Изобретение относится к области химической и радиохимической промышленности и может быть использовано для получения нитридного ядерного топлива (мононитрида урана и смеси мононитридов урана и плутония).
Изобретение относится к области радиохимии и может быть использовано в аналитической химии. .

Изобретение относится к способу совместного осаждения актиноидов со степенью окисления (IV), в котором селективный органический комплексообразователь, состоящий из атомов кислорода, углерода, азота, водорода или из карбоновой кислоты, добавляют в водные растворы, содержащие актиноиды в степени окисления (IV), проводят одновременное осаждение по крайней мере двух комплексных соединений актиноидов, затем осадок прокаливают.

Изобретение относится к неорганической химии, в частности к способу получения азотнокислых солей урана и актинидов. .
Наверх