Способ вакуумного ионно-плазменного нанесения покрытий


 


Владельцы патента RU 2451770:

Открытое акционерное общество "Научно-производственное объединение Энергомаш имени академика В.П. Глушко" (RU)

Изобретение относится к области машиностроения, а именно к способам вакуумного ионно-плазменного нанесения покрытий, и может быть использовано при нанесении покрытий на детали сложной конфигурации. Способ включает создание разности электрических потенциалов между деталью и катодом, очистку поверхности детали потоком ионов, снижение разности потенциалов, нанесение покрытия и проведение отжига покрытия путем повышения разности потенциалов. После отжига деталь охлаждают до комнатной температуры, помещают в печь и производят диффузионный отжиг в вакуумной среде. При этом ионный поток и поток испаряющегося материала, идущий от катода к детали, при очистке экранируют. Очистку проводят ионами инертного газа, после очистки экраны отводят и наносят покрытие при вращении детали вокруг своей оси. Причем очистку, нанесение покрытия и отжиг осуществляют за один цикл, а диффузионный отжиг покрытия осуществляют ступенчато при Т=100±5, 340±10, 730±10 и 900±50°С в вакууме 1·10-3 мм рт.ст. Технический результат - повышение производительности способа. 4 з.п. ф-лы.

 

Область техники

Изобретение относится к области машиностроения, в частности к нанесению покрытий в вакууме ионно-плазменным способом, и может быть использовано при нанесении покрытий на деталях сложной конфигурации, например на рабочем колесе турбины, выполненных из высоколегированных сплавов, преимущественно на никелевой основе.

Предшествующий уровень техники

Известен способ ионно-плазменного нанесения покрытий на поверхность детали сложной конфигурации (патент RU №2192501, МПК С23С 14/34 от 2002 г.), изготовленной из высоколегированного никелевого сплава в высоком вакууме в присутствии инертного газа - аргона. Способ включает создание высоковольтной электродуги между деталью и катодом, при которой в камере образуется плазменный поток, содержащий ионы инертного газа (аргона), с помощью которого производят очистку поверхности детали, после чего снижают напряжение между деталью и катодом и производят нанесение покрытия с последующим отжигом, причем в процессе нанесения покрытия деталь вращают вокруг своей оси, далее охлаждают деталь до комнатной температуры, помещают в печь и производят диффузионный отжиг в вакуумной среде, при этом в процессе ионной очистки деталь экранируют от плазменного потока, испаряемого вещества катода, а после ионной очистки эти экраны отводят. Процесс очистки детали и нанесение покрытия производят неоднократно до требуемой толщины.

Однако в известном способе производительность процесса нанесения покрытия заданной толщины невысокая из-за необходимости проведения операций напыления слоев на подложку и их отжига в несколько циклов.

Раскрытие изобретения

Задача изобретения - создание способа получения покрытия требуемой толщины, при котором очистку, нанесение покрытия требуемой толщины и отжиг осуществляют за один цикл.

Эта задача решена за счет того, что в способе вакуумного ионно-плазменного нанесения покрытий, включающем создание разности электрических потенциалов между деталью и катодом, очистку поверхности детали потоком ионов, снижение разности потенциалов и нанесение покрытия, проведение отжига покрытия путем повышения разности потенциалов, ионный поток и поток испаряющегося материала, идущий от катода к детали, при очистке экранируют, а очистку проводят ионами инертного газа, после очистки экраны отводят и наносят покрытие с последующим отжигом, причем в процессе нанесения покрытия деталь вращают вокруг своей оси, далее охлаждают деталь до комнатной температуры, помещают в печь и производят диффузионный отжиг в вакуумной среде, при этом очистку, нанесение покрытия требуемой толщины и отжиг осуществляют за один цикл, а диффузионный отжиг покрытия осуществляют ступенчато при Т=100±5, 340±10, 730±10 и 900±50°C в вакууме 1×10-3 мм рт.ст.

Другими отличиями являются:

- очистку поверхности детали проводят при разности электропотенциалов между деталью и катодом 1500-2000 В.

- процесс нанесения покрытия осуществляют при разности электропотенциалов между деталью и катодом 70-90 В.

- отжиг нанесенного слоя покрытия проводят при разности электропотенциалов между деталью и катодом до 500 В.

- диффузионный отжиг покрытия осуществляют ступенчато при Т=100±5, 340±10, 730±10 и 900±50°C в вакууме 1×10-3 мм рт.ст., при этом при 100±5 выдержка составляет 2,5 часа, при 340±10 - ~5 часов, при 730±10 - ~6 часов и при 900±50°C - ~2 часа.

Пример осуществления способа

В качестве детали использовано рабочее колесо турбины диаметром 550 мм, выполненное из высоколегированного сплава на никелевой основе. В камере были расположены испарители с катодами из никеля, экранированными со стороны детали. После создания в камере разрежения 1·10-5 мм рт.ст., введения в нее аргона и создания разности электрических потенциалов между деталью и катодом до 2000 В был сформирован ионно-плазменный поток в основном из ионов этого газа. При этой разности электропотенциалов проводили процесс очистки поверхности детали ионами аргона. По окончании очистки разность электропотенциалов снижали до 70-90 В и осуществляли напыление слоя покрытия толщиной 200-300 мкм. Далее разность электропотенциалов повышали до 500 В и по мере достижения температуры детали не выше 850°С осуществляли отжиг покрытия с выдержкой 60 мин. Охлаждение детали до комнатной температуры проводили в этой же камере в высоком вакууме в течение 8 часов. После этого деталь помещали в вакуумную печь и производили диффузионный отжиг полученного покрытия с изотермическими выдержками от 3 до 12 часов при температурах 120±5°С, 340±10°С, 730±10°С и 900±50°С и разрежении 1·10-3 мм рт.ст. Охлаждение детали осуществляли с печью при том же вакууме.

При использовании вышеописанной технологии были получены никелевые покрытия толщиной слоя 150-250 мкм на рабочем колесе турбины. Испытания этих изделий в составе энергетических установок показали высокий уровень адгезионных и защитных свойств покрытия.

Применение данной технологии получения покрытий на деталях сложной конфигурации и больших размеров позволило значительно сократить временной цикл их получения (в 1,5-1,75 раз) и уменьшить энергоемкость всего технологического процесса за счет исключения многократных промежуточных отжигов, интенсификации процесса очистки подложки, а также скорости нагрева детали.

В процессе нанесения Ni-покрытия на деталь в присутствии аргона в рабочей камере в пористом покрытии всегда содержатся атомы аргона начиная от границы раздела покрытие - подложка. Присутствие атомов аргона на границе раздела препятствует диффузии Ni-покрытия в подложку, а наличие их в объеме покрытия тормозит процессы самодиффузии атомов никелевого покрытия в процессе термообработки. Таким образом, в первом случае ухудшаются условия для обеспечения адгезии никелевого покрытия с подложкой, во втором появляются ограничения в осуществлении процессов самодиффузии атомов никелевого покрытия, и, соответственно, покрытие остается пористым.

Еще более угрожающим для осуществления процессов диффузии и самодиффузии является свободный подъем температуры при термообработке. Объясняется это тем, что в процессе произвольного нагрева возникает множество причин для взрывного механизма в покрытии, а связь между атомами никелевого покрытия и атомами никеля с подложкой после окончания процесса нанесения покрытия является слабой - на уровне физической связи. Физико-химическая связь на стадии, предшествующей термообработке, отсутствует.

Одной из причин взрыва покрытия может быть скопление аргона и частиц влаги в порах, которые содержатся в большом количестве в никелевом покрытии, при передаче детали для термообработки на другом оборудовании.

Подъем температуры до 850° после окончания процесса нанесения никелевого покрытия и выдержка при ней 40÷60 мин позволяют уменьшить негативное влияние аргона на процессы диффузии и самодиффузии никелевого покрытия. Происходит это благодаря начавшемуся процессу кристаллизации атомов никелевого покрытия при этой температуре (создается более упорядоченная структура никелевого покрытия - типа ближнего порядка), и, соответственно, покрытие уплотняется. При этом обеспечивается улучшение процесса самодиффузии атомов Ni и диффузии его в подложку.

Ступенчатый отжиг при медленном нагреве рабочего колеса турбины с никелевым покрытием начиная с 100°С с выдержкой 2,5 часа позволяет уже на первой ступени достичь равномерного прогрева подложки и покрытия и тем самым исключить появление градиента температур между подложкой и покрытием и, соответственно, влияния разницы коэффициентов термического расширения. Одновременно происходит ламинарное удаление атомов аргона из покрытия. Равномерно удаляемый аргон из покрытия не вызывает побочных «взрывных» явлений, и тем самым сохраняется при этой температуре достигнутое ранее сформированное состояние покрытия. Кроме того, такая выдержка при 100°С позволяет удалить частицы влаги из покрытия, которые попадают в него в процессе выполнения контрольных замеров его толщины. Известно, что пóра является хорошим капилляром, а контрольные операции осуществляют в атмосферных условиях. При дальнейшем нагреве до 340°С с выдержкой ~5 часов благоприятные условия для дальнейшего формирования покрытия сохраняются. Обеспечиваются они тем, что нагрев детали до этой температуры осуществляется медленно, т.к. время нагрева достаточно продолжительное и составляет не более 100°С в час, а выдержка в течение ~5 часов при этой температуре еще дополнительно позволяет сохранить эти условия. Таким образом, данная стадия позволяет полностью удалить остатки частиц влаги и уменьшить содержание атомов аргона в покрытии.

Продолжающийся нагрев до Т=730°С в течение ~6 часов и начавшийся процесс рекристаллизации никелевого покрытия и выдержка на этой температуре позволяют удалить большую часть атомов аргона из покрытия. Это способствует началу диффузии никеля в подложку, уплотнению никелевого покрытия благодаря процессу самодиффузии атомов никеля. Дальнейший нагрев до 900±50°C и выдержка при ней ~2 часа обеспечивают диффузию атомов никеля в подложку глубиной до 30-40 мкм и образование кристаллической гранецентрированной решетки во всем объеме покрытия. Эта завершающая стадия позволяет достичь высокой адгезии покрытия с подложкой и достаточную плотность покрытия.

Промышленная применимость

Способ может быть использован при нанесении покрытий на деталях сложной конфигурации, например на рабочих колесах турбины, выполненных из высоколегированных сплавов, преимущественно на никелевой основе.

1. Способ вакуумного ионно-плазменного нанесения покрытий, включающий создание разности электрических потенциалов между деталью и катодом, очистку поверхности детали потоком ионов, снижение разности потенциалов и нанесение покрытия, проведение отжига покрытия путем повышения разности потенциалов, при этом ионный поток и поток испаряющегося материала, идущий от катода к детали при очистке экранируют, а очистку проводят ионами инертного газа, после очистки экраны отводят и наносят покрытие с последующим отжигов, причем в процессе нанесения покрытия деталь вращают вокруг своей оси, после отжига охлаждают деталь до комнатной температуры, помещают в печь и производят диффузионный отжиг в вакуумной среде, отличающийся тем, что очистку, нанесение покрытия требуемой толщины и отжиг осуществляют за один цикл, а диффузионный отжиг покрытия осуществляют ступенчато при Т=100±5, 340±10, 730±10 и 900±50°С в вакууме 1·10-3 мм рт.ст.

2. Способ по п.1, отличающийся тем, что очистку поверхности детали проводят при разности электропотенциалов между деталью и катодом 1500-2000 В.

3. Способ по п.1, отличающийся тем, что процесс нанесения покрытия осуществляют при разности электропотенциалов между деталью и катодом 70-90 В.

4. Способ по п.1, отличающийся тем, что отжиг нанесенного слоя покрытия проводят при разности электропотенциалов между деталью и катодом до 500 В.

5. Способ по п.1, отличающийся тем, что диффузионный отжиг покрытия осуществляют ступенчато при Т=100±5, 340±10, 730±10 и 900±50°С в вакууме 1·10-3 мм рт.ст., при этом при 100±5°С выдержка составляет 2,5 ч, при 340±10°С ~5 ч, при 730±10°С ~6 ч и при 900±50°С ~2 ч.



 

Похожие патенты:

Изобретение относится к технологии получения нанокристаллических пленок рутила и может быть использовано при создании полупроводниковых приборов, а также при получении защитных и других функциональных покрытий.

Изобретение относится к установке для комбинированной ионно-плазменной обработки и может быть применено в машиностроении, преимущественно для ответственных деталей, например рабочих и направляющих лопаток турбомашин.
Изобретение относится к области микроэлектроники, в частности к микроэлектронике интегральных пьезоэлектрических устройств на поверхностных акустических волнах (фильтры, линии задержки и резонаторы), которые находят широкое применение в авионике и бортовых системах.
Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбостроении при изготовлении рабочих лопаток турбин с монокристаллической структурой из жаропрочных литейных никелевых сплавов.
Изобретение относится к способам допроявления фоторезистов и может быть использовано в области микроэлектроники интегральных пьезоэлектрических устройств на поверхностных акустических волнах (фильтры, линии задержки, резонаторы).

Изобретение относится к способам получения тонких слоев материала ионной имплантацией и может быть использовано при модификации подложек из металлов, диэлектриков и полупроводников.

Изобретение относится к технологии нанесения легирующих материалов на поверхность металлических изделий и может быть использовано в машиностроении и металлургии для упрочнения рабочих поверхностей.

Изобретение относится к области электротехники, в частности к способам изготовления анодной фольги, которая может быть использована в твердых электролитических конденсаторах с электролитом из проводящего полимера.
Изобретение относится к области нанотехнологий, в частности к способу получения наночастиц металла на поверхности подложки. .

Изобретение относится к области ионно-плазменного напыления многослойных пленок. .
Изобретение относится к металлургии, а именно к металлическим материалам, используемыми при изготовлении вкладышей для двигателей внутреннего сгорания. .
Изобретение относится к области металлургии и может быть использовано при изготовлении вкладышей подшипников скольжения. .

Изобретение относится к способу формирования бритвенного лезвия. .
Изобретение относится к машиностроению и может быть использовано для защиты поверхности деталей машин из титановых сплавов, эксплуатирующихся в условиях морского климата.
Изобретение относится к области машиностроения и может быть использовано для обработки поверхности титановых изделий, таких как лопатки компрессора газотурбинных двигателей и установок.

Изобретение относится к области металлургии, в частности к жаростойкому покрытию с градиентом хрома по профилю пера лопатки. .

Изобретение относится к способу покрытия основы и изделие с покрытием его основы. .

Изобретение относится к области авиадвигателестроения, а именно к нанесению покрытий на лопатки компрессора газотурбинных двигателей. .

Изобретение относится к устройству для нанесения покрытий на алмазные порошки. .
Наверх