Устройство контроля точности обработки деталей на токарных станках с числовым программным управлением

Изобретение относится к области обработки металлов резанием на токарных станках с числовым программным управлением и может быть использовано для активного контроля геометрических параметров деталей. В качестве оптического датчика использована видеокамера высокого разрешения, а в устройство введены блок усиления и обработки видеосигнала, импульсный стробоскопический осветитель, генератор импульсных напряжений и синхронизатор. Выход последнего подключен к входу генератора импульсных напряжений, а выход генератора импульсных напряжений подсоединен к входу импульсного стробоскопического осветителя. Оптический выход осветителя связан с оптическим входом видеокамеры высокого разрешения, а определение по высотным параметрам микронеровностей профиля поверхности обработанной части детали шероховатости полученной поверхности и сравнения ее с требуемой шероховатостью осуществляется компьютером. Обеспечивается точность обработки и управление качеством обработки. 2 ил.

 

Изобретение относится к области обработки металлов резанием на токарных станках с числовым программным управлением (ЧПУ) и может быть использовано для контроля геометрических параметров деталей.

Известно устройство для обеспечения геометрической точности и размерной настройки высокоточного металлорежущего станка, содержащее датчик контроля температуры переднего подшипника шпинделя металлорежущего станка, в качестве которого использован термоэлектрический измерительный преобразователь, блок сравнения, задатчик температуры окружающей среды, регулирующий усилитель. Выход датчика соединен со входом блока сравнения, другой вход которого соединен с задатчиком температуры окружающей среды, а выход - со входом регулирующего усилителя. Выход регулирующего усилителя соединен с визуальным цифровым индикатором и исполнительными механизмами для изменения радиального положения инструмента и базового центрового элемента с удерживаемой заготовкой, (патент RU 2116869, МПК6 B23B 25/06, B23B 41/00).

Описанное устройство имеет узкие функциональные возможности вследствие, во-первых, неосуществимости компенсации возмущающих воздействий, действующих на деталь при прохождении режущего инструмента по ее поверхности в реальном времени, что снижает ее геометрическую точность, во-вторых, отсутствия управления качеством обработки детали из-за отсутствия, в свою очередь, информации о шероховатости и топографии обработанной поверхности.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату (прототипом) является устройство управления точностью обработки деталей на высокоточном оборудовании ЧПУ, содержащее оптический датчик, аналого-цифровой преобразователь (АЦЛ), компьютер для сравнения полученного размера детали с требуемым размером детали и определения суммарного значения возмущающих воздействий в произвольной точке, блок усиления сигнала, исполнительные механизмы оборудования с ЧПУ. Выход оптического датчика подключен ко входу АЦП. Выход АЦП связан со входом компьютера, выход которого подключен ко входу блока усиления сигнала Выход блока усиления сигнала соединен с входом исполнительного механизма, выход которого соединен с резцом, и с входом исполнительного механизма, выход которого соединен с задней бабкой. Деталь удерживается передней и задней бабкой (патент RU 2288808, МПК B23B 25/06 (2006.01), B23Q 15/12 (2006.01)).

Основной недостаток этого устройства - узкие функциональные возможности вследствие отсутствия управления качеством обработки поверхности детали, что обусловлено отсутствием контроля шероховатости и топографии обработанной поверхности детали без наличия информации о названных параметрах качества этой поверхности.

Предлагаемым изобретением решается задача расширения функциональных возможностей устройства контроля точности обработки деталей на токарных станках с ЧПУ, путем обеспечения управления качеством обработки поверхности детали в реальном времени без остановки станка.

Поставленная задача решается тем, что в устройстве контроля точности обработки деталей на токарных станках с ЧПУ, содержащем оптический датчик, АЦП, выход которого связан со входом компьютера, предназначенного для сравнения полученного размера детали с требуемым размером детали и определения суммарного значения возмущающих воздействий в произвольной точке, блок усиления сигнала, вход которого подсоединен к выходу компьютера, а выход соединен с входами исполнительного механизма оборудования с ЧПУ, выход которого соединен с резцом, и исполнительного механизма оборудования с ЧПУ, выход которого соединен с задней бабкой, согласно изобретению в качестве оптического датчика использована видеокамера высокого разрешения, а в устройство введены блок усиления и обработки видеосигнала, вход которого подключен к выходу видеокамеры высокого разрешения, а выход - к входу АЦП, импульсный стробоскопический осветитель, генератор импульсных напряжений и синхронизатор, выход которого подключен к входу генератора импульсных напряжений. Выход генератора импульсных напряжений подсоединен к входу импульсного стробоскопического осветителя, оптический выход которого связан с оптическим входом видеокамеры высокого разрешения. При этом компьютер дополнительно предназначен для определения по высотным параметрам микронеровностей профиля поверхности обработанной части детали шероховатости полученной поверхности и сравнения ее с требуемой шероховатостью поверхности.

Введение в предложенное устройство видеокамеры высокого разрешения, дополнительных функциональных элементов и организация описанных выше связей позволяет увеличить не только геометрическую точность обработки, но и обеспечить управление качеством обработки поверхности детали, определяемым ее шероховатостью и топографией, что достигается корректировкой режимов резания в зависимости от реальной текущей шероховатости и топографии поверхности детали.

Настоящее изобретение поясняется чертежом, где на фиг.1 приведена схема устройства контроля точности обработки деталей на токарных станках с ЧПУ, а на фиг.2 приведено теневое изображение обработанной части детали.

Устройство контроля точности обработки деталей на токарных станках с ЧПУ содержит синхронизатор 1, образованный светодиодом 2, фотодиодом 3 и диском 4 с равноудаленными отверстиями, генератор 5 импульсных напряжений, импульсный стробоскопический осветитель 6, оптический датчик, в качестве которого использована видеокамера 7 высокого разрешения, в частности, на основе ПЗС-матрицы, блок 8 усиления и обработки видеосигнала, АЦП 9, компьютер 10, предназначенный для определения по высотным параметрам микронеровностей профиля поверхности обработанной части детали шероховатости полученной поверхности и сравнения ее с требуемой шероховатостью поверхности, а также для сравнения полученного размера детали с требуемым размером детали и определения суммарного значения возмущающих воздействий в произвольной точке, блок 11 усиления сигнала, исполнительные механизмы 12 и 13 оборудования с ЧПУ. Синхронизатор 1 жестко закреплен на шпинделе станка.

Выход синхронизатора 1 подключен к входу генератора 5 импульсных напряжений, а выход генератора 5 импульсных напряжений связан с входом импульсного стробоскопического осветителя 6. Оптический выход импульсного стробоскопического осветителя 6 связан с оптическим входом видеокамеры 7 высокого разрешения. Выход видеокамеры 7 подключен к входу блока 8 усиления и обработки видеосигнала, выход которого подключен к входу АЦП 9. Выход АЦП 9 связан с входом компьютера 10, выход которого связан с входом блока 11 усиления сигнала.

Выход блока 11 усиления сигнала подключен к входам исполнительных механизмов 12 и 13. При этом выход исполнительного механизма 12 соединен с резцом 14, а выход исполнительного механизма 13 подключен к задней бабке 15. Обрабатываемая деталь 17 удерживается передней бабкой 16 и задней бабкой 15 (Фиг.1).

Теневое изображение обработанной части детали 17 содержит сведения о микронеровностях профиля 18 обработанной поверхности (Фиг.2). Высотные параметры 19 микронеровностей профиля определяют шероховатость обработанной поверхности.

Устройство контроля точности обработки деталей на токарных станках с ЧПУ работает следующим образом. Синхронизатором 1 формируются управляющие импульсы. Частота следования этих импульсов синхронна с частотой вращения шпинделя. С выхода синхронизатора 1 импульсы поступают на вход генератора 5 импульсных напряжений, который вырабатывает импульсное напряжение, частота которого кратна частоте вращения шпинделя. Это напряжение подается на импульсный стробоскопический осветитель 6, жестко закрепленный на суппорте станка. Импульсный стробоскопический осветитель 6 периодически освещает обработанную часть детали 17 с частотой, кратной частоте вращения шпинделя.

В момент освещения обработанной части детали 17 на датчик видеокамеры 7 высокого разрешения проецируется ее теневое изображение, которое содержит информацию о профиле 18 обработанной поверхности, высотные параметры 19 микронеровностей профиля которой определяют шероховатость обработанной поверхности. Датчик камеры высокого разрешения 7 преобразует теневое изображение обработанной части детали 17 в электрический видеосигнал. Полученный видеосигнал поступает в блок 8 усиления и обработки видеосигнала, где он усиливается и фильтруется. С выхода блока 8 усиления и обработки видеосигнала усиленный и отфильтрованный видеосигнал подается на вход АЦП 9, где осуществляется его преобразование в цифровой код. Полученный цифровой код поступает в компьютер 10, который сравнивает полученный размер детали 17 с требуемым размером. При совпадении размеров обработка продолжается, при несовпадении размеров компьютер 10 определяет величину сигнала компенсации, который поступает в блок 11 усиления сигнала, где сигнал усиливается и затем подается на исполнительные механизмы 12 и 13, которыми корректируются положения резца 14 и задней бабки 15 до тех пор, пока не восстановится заданный размер детали 17. Кроме того, по высотным параметрам микронеровностей профиля 18 обработанной части детали 17 компьютером 10 определяется шероховатость полученной поверхности и сравнивается с требуемой шероховатостью. При их совпадении обработка продолжается на тех же режимах резания, при несовпадении компьютером 10 определяются новые режимы резания, а именно скорость резания, подача и глубина резания, которые обеспечат требуемую шероховатость поверхности. После расчета новых режимов резания компьютер формирует команду на их изменение. Таким образом, предлагаемое устройство позволяет управлять качеством обработки поверхности.

Также наряду с управлением качеством обработки при наличии соответствующего программного обеспечения предлагаемое устройство позволяет получить компьютерную модель топографии обработанной поверхности.

Точность такой модели будет зависеть от разрешающей способности и быстродействия видеокамеры 8 высокого разрешения, а также от частоты вспышек импульсного стробоскопического осветителя 6 на один оборот детали 17, причем с увеличением частоты точность модели будет увеличиваться.

Таким образом предлагаемое устройство позволяет получить информацию о шероховатости и топографии обработанной поверхности, что обеспечит управлением качеством обработки в реальном времени без остановки станка.

Устройство контроля точности обработки деталей на токарных станках с числовым программным управлением, содержащее оптический датчик, аналого-цифровой преобразователь, выход которого связан со входом компьютера, предназначенного для сравнения полученного размера детали с требуемым размером детали и определения суммарного значения возмущающих воздействий в произвольной точке, блок усиления сигнала, вход которого подсоединен к выходу компьютера, а выход соединен с входами исполнительного механизма оборудования с числовым программным управлением, выход которого соединен с резцом, и исполнительного механизма оборудования с числовым программным управлением, выход которого соединен с задней бабкой, отличающееся тем, что в качестве оптического датчика использована видеокамера высокого разрешения, а в устройство введены блок усиления и обработки видеосигнала, вход которого подключен к выходу видеокамеры высокого разрешения, а выход - к входу аналого-цифрового преобразователя, импульсный стробоскопический осветитель, генератор импульсных напряжений и синхронизатор, выход которого подключен к входу генератора импульсных напряжений, при этом выход генератора импульсных напряжений подсоединен к входу импульсного стробоскопического осветителя, оптический выход которого связан с оптическим входом видеокамеры высокого разрешения, а компьютер дополнительно предназначен для определения по высотным параметрам микронеровностей профиля поверхности обработанной части детали шероховатости полученной поверхности и сравнения ее с требуемой шероховатостью поверхности.



 

Похожие патенты:

Изобретение относится к обработке металлов резанием на станках с ЧПУ и может быть применено для контроля работоспособности сборных многолезвийных инструментов. .

Изобретение относится к устройствам для исследования или анализа материалов путем определения их твердости и может быть использовано для определения физико-механических характеристик растущих деревьев, пиломатериалов, деревянных строительных конструкций и т.п.

Изобретение относится к области обработки материалов резанием и предназначено для контроля состояния режущих кромок многолезвийного инструмента. .

Изобретение относится к металлообрабатывающей промышленности, в частности к токарным станкам с повышенной точностью изготовления деталей. .

Изобретение относится к системам автоматического управления, в частности к следящим системам, объектом которых является исполнительный двигатель с нагрузкой на валу, в том числе с упругими связями и зазором, к которым предъявляются повышенные требования к точности, быстродействию и стабильности динамических характеристик.

Изобретение относится к области машиностроения, в частности к испытаниям смазочно-охлаждающих технологических сред, используемых при резании металлов. .

Изобретение относится к машиностроению, в частности к области обработки металлов резанием, к контролю износа и остаточной стойкости режущего инструмента, и может применяться в системах ЧПУ станка.

Изобретение относится к обработке металлов резанием и может быть использовано для бесконтактного определения температуры в зоне резания при механической обработке.

Изобретение относится к станкостроению, в частности к области прогнозирования и управления точностью токарной обработки поверхности детали на оборудовании с ЧПУ. .

Изобретение относится к токарным станкам и предназначено для компенсации тепловых смещений шпинделей

Изобретение относится к области станкостроения и может быть использовано в автоматизированных системах технологического оборудования и в измерительной технике

Изобретение относится к электромеханике и может быть использовано для повышения точности токарной обработки серийных некруглых деталей

Способ относится к определению величины параметра шероховатости Ra при обработке стали с измерением термоэлектродвижущей силы. Для повышения точности определения величины параметра Ra предварительно осуществляют кратковременный пробный проход резцом по детали, измеряют термоЭДС, по которой определяют поправочный коэффициент на физико-механические свойства контактируемой пары резец-деталь, а величину параметра шероховатости Ra определяют с использованием измеренного значения термоЭДС по приведенной формуле. 7 табл.

Способ включает генерирование управляющих сигналов, поступающих на электромагнитные муфты автоматической коробки скоростей подач станка. Для повышения универсальности и расширения области применения профиль обрабатываемой детали представляют цифровой моделью в виде координат большого числа элементарных отрезков, вносят в память цифровой системы управления (ЦСУ). Затем в процессе обработки посредством ЦСУ определяют отклонения реального положения рабочего органа станка от исходного теоретического профиля и в зависимости от величины отклонения, направления подачи и угла наклона текущего элементарного отрезка профиля формируют управляющие сигналы, поступающие на электромагнитные муфты следящей подачи, которые переключают редуктор автоматической коробки скоростей для обеспечения автоматического отслеживания траектории движения рабочего органа станка в отношении положения линии каждого элементарного отрезка. При этом выбор ведущей и следящей подачи определяют автоматически в зависимости от угла наклона каждого элементарного отрезка, а интервалы включения и выключения следящей подачи и частоту ее работы определяют по приведенным формулам. Моменты включения и выключения следящей подачи определяют в зависимости от качества обработанной поверхности, заданного диапазоном расчетных значений указанных отклонений положения рабочего органа станка и шириной зоны слежения. 2 ил.

Способ включает осуществление процесса резания на интересующих режимах с одновременной регистрацией величины термо-ЭДС, образующейся в результате взаимодействия материалов инструмента и заготовки, соотнесение значения температуры в зоне контакта со значением термо-ЭДС и построение по полученным данным тарировочного графика. Для снижения трудоемкости и повышения точности на заготовке выполняют поперечные пазы, полируют боковую поверхность режущей части инструмента. Освещают боковую полированную поверхность пучком когерентного монохроматического излучения, формируют интерференционную картину в предметной плоскости видеокамеры в результате взаимодействия отраженного и опорного пучков. Осуществляют процесс врезания инструмента в заготовку с радиальной подачей, регистрируют с помощью видеосъемки изменения интерференционных картин по отношению к интерференционной картине, полученной до резания. По изменениям интерференционных картин, связанных с перемещениями боковой поверхности, определяют значения температур в зоне контакта в моменты нахождения режущей части инструмента в поперечных пазах заготовки, измеряют длины контакта на передней и задней поверхностях режущего инструмента на изображении его режущей части, совмещенном с изображением интерференционных картин, в моменты резания перед вхождением инструмента в очередной паз. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области общего и специального машиностроения и может использоваться во всех областях промышленного производства, а именно при токарной обработке длинных деталей типа вал, и, в частности, при обработке валопроводов движительно-рулевых колонок (ДРК). Способ адаптивного управления обработкой валопроводов ДРК включает генерирование сигналов управления, поступающих на электропривод поперечной подачи каретки с резцедержателем, при этом в плоскости, проходящей через вершину резца перпендикулярно оси центров станка, с помощью оптоэлектронных датчиков контролируют горизонтальные и вертикальные отклонения суппорта от оси центров станка, величину которых компенсируют за счет дополнительного перемещения каретки с резцедержателем, причем величину перемещения определяют по предлагаемой формуле. 2 ил.

Способ включает осуществление процесса резания с одновременной регистрацией величины термоЭДС, образующейся в результате взаимодействия материалов режущего инструмента и заготовки, определение значений температуры в зоне контакта и соотнесение ее со значением термоЭДС, изменение параметров режимов резания и повторное получение соотносящихся данных, по которым строят тарировочный график. Для повышения точности измерения температуры предварительно полируют боковую поверхность режущей части инструмента, освещают боковую полированную поверхность пучком когерентного монохроматического излучения, формируют интерференционную картину в предметной плоскости видеокамеры в результате взаимодействия отраженного и опорного пучков, непрерывно регистрируют с помощью видеосъемки изменения интерференционных картин, связанных с перемещениями боковой поверхности, выводят режущую часть инструмента из зоны резания, а значения температуры в зоне контакта определяют по изменению интерференционных картин до резания и после выведения режущей части инструмента из зоны резания. 2 з.п. ф-лы, 3 ил.

Устройство содержит образец детали, установленный на оправке, и резец, изолированные от зажимных элементов станка и резцедержателя. При этом образец детали и режущая часть резца электрически соединены через токосъемник и измерительный прибор для регистрации термо-ЭДС. Для повышения точности измерения температуры режущей части резца устройство снабжено интерферометром, состоящим из полупрозрачного зеркала и оптического клина, жестко связанного с резцом посредством держателя, средством записи значений термо-ЭДС и интерференционных картин, регистрируемых видеокамерой, лазером и коллиматором для расширения пучка когерентного монохроматического излучения. При этом боковая поверхность режущей части резца выполнена зеркально-полированной. На периферии образца детали могут быть выполнены поперечные пазы. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области обработки металлов резанием, в частности к способу определения оптимальной скорости резания при обработке жаропрочных сплавов на никелевой основе для твердосплавного инструмента. По результатам кратковременных испытаний определяют температуру резания, при которой происходит изменение вида стружки из сливной в элементную. На графике зависимости температуры резания от скорости резания по этой температуре определяют оптимальную скорость резания. Технический результат заключается в сокращении трудоемкости определения оптимальной скорости резания на основе стандартных кратковременных испытаний при обработке жаропрочных сплавов на никелевой основе для твердосплавного инструмента. 1 ил., 1 табл.
Наверх