Пьезоэлектрический насос



Пьезоэлектрический насос
Пьезоэлектрический насос
Пьезоэлектрический насос
Пьезоэлектрический насос
Пьезоэлектрический насос
Пьезоэлектрический насос
Пьезоэлектрический насос

 


Владельцы патента RU 2452872:

Кузнецов Андрей Леонидович (RU)

Техническое решение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Пьезоэлектрический насос 1 содержит корпус 2, а также расположенные в нем и соединенные последовательно задний распорный пьезоэлектрический блок 3, пьезоэлектрический блок движения 4 и передний распорный пьезоэлектрический блок 5. Вытеснитель перекачиваемой среды 12, соединенный с передним распорным пьезоэлектрическим блоком 15. Повышается ресурс работы пьезоэлектрического насоса, расширяется сфера его применения путем увеличения перечня перекачиваемых сред, а также обеспечивается повышение напора за счет исключения контакта перекачиваемой среды с поверхностями трения корпуса и распорных пьезоэлектрических блоков. 7 ил.

 

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред.

Ближайшим аналогом заявленного технического решения является пьезоэлектрический насос для отбора проб среды, описанный в патенте ЕА 011817 В1, 30.06.2009, МКЭ F04B 17/03. Насос содержит вытеснитель перекачиваемой среды, корпус, расположенные в корпусе задний распорный пьезоэлектрический блок, пьезоэлектрический блок движения, выполненный с возможностью перемещения относительно корпуса, а также передний распорный пьезоэлектрический блок. Распорные пьезоэлектрические блоки и пьезоэлектрический блок движения выполнены из материала, способного изменять свою длину при подведении к ним электрического потенциала, в том числе из пьезокерамического материала. С пьезоэлектрическим блоком движения соединены штоки, проходящие сквозь распорные блоки.

Поступающие на распорные пьезоэлектрические блоки электрические импульсы вызывают поочередную фиксацию штоков относительно корпуса. Пьезоэлектрический блок движения под воздействием поступающего к нему электрического импульса осуществляет периодическое перемещение другого штока на один шаг. Это приводит к пошаговому перемещению вытеснителя относительно корпуса в одном направлении.

Для обеспечения достаточного для уверенной работы насоса хода вытеснителя, распорные блоки ближайшего аналога имеют ограниченную длину. Это приводит к малому распорному усилию и, как следствие, к ограниченному напору насоса.

Таким образом, задача, на решение которой направлено настоящее техническое решение, состоит в создании эффективного и надежного пьезоэлектрического насоса.

Технический результат, достигаемый при реализации изобретения, заключается в повышении напора пьезоэлектрического насоса, а также в увеличении ресурса его работы.

Для решения поставленной задачи с достижением технического результата в известном пьезоэлектрическом насосе, содержащем вытеснитель перекачиваемой среды, корпус, расположенные в корпусе задний распорный пьезоэлектрический блок, пьезоэлектрический блок движения, выполненный с возможностью перемещения относительно корпуса в направлении изменения своей длины, а также передний распорный пьезоэлектрический блок, согласно заявленному изобретению задний распорный пьезоэлектрический блок, пьезоэлектрический блок движения и передний распорный пьезоэлектрический блок соединены последовательно, а вытеснитель перекачиваемой среды соединен с передним распорным пьезоэлектрическим блоком.

За счет новой формы выполнения связи между задним распорным пьезоэлектрическим блоком, пьезоэлектрическим блоком движения, передним распорным пьезоэлектрическим блоком, а также вытеснителем перекачиваемой среды удается создать надежный и эффективный пьезоэлектрический насос. Пространства, не занятого конструктивными элементами, в новом насосе, имеющем одинаковые с ближайшим аналогом габаритные размеры и ход вытеснителя, существенно меньше. Все дополнительное пространство заполнено распорными пьезоэлектрическими блоками. При поступлении на эти блоки электрического потенциала они создают повышенное распорное усилие. А вследствие повышения распорного усилия вытеснитель имеет возможность с большей силой давить на перекачиваемую жидкость, то есть повышается напор насоса.

На пьезоэлектрические блоки насоса новой конструкции можно подавать импульсы пониженного потенциала по сравнению с ближайшим аналогом, обеспечив при этом, помимо геометрических размеров, такие же, как у ближайшего аналога, напор и подачу. В таком случае возрастет надежность насоса. Это произойдет потому, что ресурс работы пьезокерамики зависит от величины потенциала поступающих электрических импульсов.

Указанные преимущества изобретения, а также его особенности поясняются лучшими вариантами выполнения со ссылками на чертежи.

Фиг.1 изображает пьезоэлектрический насос с плунжерной парой в качестве вытеснителя перекачиваемой среды;

Фиг.2 - разрез пьезоэлектрического насоса в области распорного пьезоэлектрического блока (провода не изображены);

Фиг.3 - разрез пьезоэлектрического насоса в области пьезоэлектрического блока движения (провода не изображены);

Фиг.4 - пьезоэлектрический насос с сильфоном в качестве вытеснителя перекачиваемой среды (провода не изображены);

Фиг.5 - вырыв на блоке движения для демонстрации сжимающего стержня;

Фиг.6 - вариант исполнения сжимающего стержня крупным планом;

Фиг.7 - разрез пьезоэлектрического насоса в области пьезоэлектрического блока движения (провода не изображены). Корпус выполнен частично из высокомодульной керамики.

Пьезоэлектрический насос 1 (фиг.1 и 4) содержит корпус 2, задний распорный пьезоэлектрический блок 3, пьезоэлектрический блок движения 4, передний распорный пьезоэлектрический блок 5. Задний распорный пьезоэлектрический блок 3 состоит из скобы 6, пьезомодулей 7 и 8. Передний распорный пьезоэлектрический блок 5 состоит из рамки 9, пьезомодулей 10 и 11. В зависимости от требуемого напора применяют необходимое количество пьезомодулей в распорных блоках насоса. В передней части насоса расположен вытеснитель перекачиваемой среды 12. Для обеспечения циклической работы применены впускные клапаны 13, 14 и выпускной клапан 15.

Для насоса, изображенного на фиг.1, в качестве вытеснителя перекачиваемой среды 12 выбрана плунжерная пара, состоящая из плунжера 16 и корпуса плунжера 17. Для предотвращения утечек применен сальник 18. Сильфон 19, добавленный в изображенную на фиг.1 конструкцию, полностью изолирует перекачиваемую плунжерной парой среду от области корпуса 1, в которой движутся пьезоэлектрические блоки 3, 4 и 5. Плунжер 16 соединен с рамкой 9 при помощи пластинчатой пружины 20, выполненной заодно с рамкой 9. Пластинчатая пружина 20 уменьшает передающиеся на плунжер 16 вибрационные колебания, образующиеся при поступательном движении переднего пьезоэлектрического распорного блока 5.

Электрический провод 21 присоединен к пьезомодулям 7 и 8 заднего распорного пьезоэлектрического блока 3. Электрический провод 22 присоединен к пьезоэлектрическому блоку движения 4. Электрический провод 23 присоединен к пьезомодулям 10 и 11 заднего распорного пьезоэлектрического блока 3. Электрические провода 21, 22 и 23 подключены к электрическому разъему 24.

Корпус 2 содержит две пластины трения 24 и две щеки 25 (фиг.2), скрепленных болтами 26. В пластины трения 24 упираются своими торцами пьезомодули 7, 8, 10, 11 заднего 3 и переднего 5 распорных блоков через планки скобы 6 (для заднего блока 3) или рамки 9 (для переднего блока 5). Размер щек 25 между контактирующими с пластинами трения 24 гранями выполнен с очень высокой точностью. На фиг.2 в разрез попал пьезомодуль 10 переднего распорного пьезоэлектрического блока 9. Также в разрез попал датчик обратной связи 27 по положению переднего распорного пьезоэлектрического блока 9. Внутри пьезоэлектрического блока движения 4 находится сжимающий стержень 28 (фиг.4 и 5). На сжимающем стержне 28 выполнены надрезы 29 (фиг.6), что уменьшает его жесткость в продольном направлении.

Для насоса, изображенного на фиг.4, в качестве вытеснителя перекачиваемой среды выбран сильфон. Растягивающая и сжимающая сила передается на активный сильфон 30 от рамки 9 через пластинчатую пружину 20 и шток 31. Для исключения застойных зон при перекачивании сред, содержащих механические примеси, вблизи основания активного сильфона 30 в корпусе выполнены дополнительные впускные клапаны 32 и 33.

Одно из возможных применений заявленной конструкции насоса - перекачка жидкостей при изменяющемся в широких пределах давлении окружающей среды. Для этого внутреннюю полость корпуса 2, в которой находятся задний распорный пьезоэлектрический блок 3, пьезоэлектрический блок движения 4, передний распорный пьезоэлектрический блок 5, заполняют жидкостью. Также насос 1 в этом случае содержит пассивный сильфон 34, закрепленный на перегородке 35. Для исключения задевания его за корпус 2 предусмотрен соединенный с дном сильфона задний шток 36, выполненный с возможностью продольного скольжения в одном из отверстий перегородки 35.

Поскольку для эффективной работы пьезоэлектрического насоса 1 огромное значение имеет жесткость щек 25, в случае ограничений по массе или габаритам возможно применение керамики или камня с высоким значением модуля упругости 1-го рода в качестве материала щек. Для этого потребуется крепление деталей корпуса 2 при помощи длинных болтов 37 (фиг.7). Также большое значение для эффективности насоса имеет высокое значение коэффициента трения между скобой 6, рамкой 9, с одной стороны, и пластинами трения 24 корпуса 2, с другой стороны. Для увеличения этого коэффициента на пластины трения 24 нанесено покрытие 38 (фиг.7). Также покрытие может быть нанесено на скользящие поверхности скобы 6 и рамки 9.

Устройство работает следующим образом.

В первой фазе нагнетания задний распорный пьезоэлектрический блок 3 (фиг.1 и 4) пьезоэлектрического насоса 1 находится в распертом состоянии, то есть скоба 6 давит на корпус 2 изнутри в поперечном направлении. Это происходит вследствие подведения к ее пьезомодулям 7 и 8 электрического потенциала от электрического разъема 24 (фиг.1) по проводу 21. Передний распорный пьезоэлектрический блок 5 (фиг.1 и 4) в этой фазе находится в свободном состоянии, между рамкой 9 и стенками корпуса 2 распорное усилие минимально или вовсе отсутствует. В то же время отсутствует зазор. Наличие зазора свидетельствует о неправильной настройке, неисправности, работе с запредельной температурой либо об износе насоса 1. Зазор приводит к дополнительной вибрации, ухудшению напора и быстрому выходу устройства из строя.

Во второй фазе нагнетания электрический потенциал поступает по проводу 22 (фиг.1) на пьезоэлектрический блок движения 4 (фиг.1 и 4), и этот блок увеличивает свою длину. При этом соединенный с ним передний распорный блок 5 перемещается на небольшое расстояние, преодолевая усилие сжимающего стержня 28 (фиг.3 и 5). Соответственно, передний распорный блок 5 (фиг.1 и 4) перемещает вверх плунжер 16 (фиг.1) или шток 31 (фиг.4) с активным сильфоном 30. Также перемещается перекачиваемая среда, заполняющая пространство перед вытеснителем перекачиваемой среды 12 (фиг.1 и 4), а именно между плунжером 16 и корпусом плунжера 17 (фиг.1) или между корпусом 2 и активным сильфоном 30 (фиг.4). Впускные клапаны 13 (фиг.1) и 14 (фиг.1 и 4) при этом закрыты, закрыты также дополнительные впускные клапаны 32 и 33 (фиг.4). Выпускной клапан 15 (фиг.1 и 4) во второй фазе нагнетания - открыт. Через него перекачиваемая среда выходит из пьезоэлектрического насоса 1 под давлением.

В третьей фазе нагнетания электрический потенциал по проводу 23 (фиг.1) поступает на передний распорный пьезоэлектрический блок 5 (фиг.1 и 4), а именно на его пьезомодули 10 и 11, и рамка 9 начинает давить на корпус 2 изнутри. Иначе говоря, блок 5 переходит в распертое состояние. Одновременно с этим электрический потенциал по проводу 21 (фиг.1) перестает поступать на задний распорный пьезоэлектрический блок 3 (фиг.1 и 4), и он переходит в свободное состояние, то есть перестает давить на корпус 2 изнутри, или же оказывает минимально возможное давление. Однако зазор в этом случае между корпусом и рамкой 9 также отсутствует.

В четвертой фазе нагнетания электрический потенциал перестает поступать по проводу 22 (фиг.1) на пьезоэлектрический блок движения 4 (фиг.1 и 4). Блок 4 переходит в свободное состояние, то есть уменьшает свою длину. При этом вперед на небольшое расстояние под действием силы от сжимающего стержня 28 (фиг.3 и 5) перемещается задний распорный пьезоэлектрический блок 3 (фиг.1 и 4). В конце четвертой фазы электрический потенциал по проводу 23 (фиг.1) перестает поступать на передний распорный пьезоэлектрический блок 5 (фиг.1 и 4), и он переходит в свободное состояние - перестает давить изнутри на корпус 2.

Подобное чередование фаз при нагнетании повторяется многократно до тех пор, пока рабочий орган вытеснителя перекачиваемой среды 12 (плунжер 16 на фиг.1 или активный сильфон 30 на фиг.4) не достигнет верхней мертвой точки. Момент достижения верхней мертвой точки определяют по кривой изменения электрического тока в проводе 22 (фиг.1). Также этот момент может контролироваться по датчику обратной связи 27 (фиг.2).

После достижения рабочим органом вытеснителя перекачиваемой среды 12 (фиг.1 и 4) верхней мертвой точки начинается всасывание. В первой фазе всасывания задний распорный пьезоэлектрический блок 3 пьезоэлектрического насоса 1 находится в свободном состоянии, то есть скоба 6 не давит на корпус 2 изнутри или давит с минимально возможным усилием. Это происходит вследствие отсутствия электрического потенциала на проводе 21 (фиг.1) и пьезомодулях 7 (фиг.1 и 4) и 8. Передний распорный пьезоэлектрический блок 5 в этой фазе находится в распертом состоянии, между рамкой 9 и стенками корпуса 2 распорное усилие максимально.

Во второй фазе всасывания электрический потенциал поступает по проводу 22 (фиг.1) на пьезоэлектрический блок движения 4 (фиг.1 и 4), и блок увеличивает свою длину. При этом задний распорный блок 3 перемещается назад на небольшое расстояние, противодействуя силе сжимающего стержня 28 (фиг.3 и 5).

В третьей фазе всасывания электрический потенциал исчезает на проводе 23 (фиг.1), на переднем распорном пьезоэлектрическом блоке 5 (фиг.1 и 4), а именно на его пьезомодулях 10 и 11, и рамка 9 перестает давить на корпус 2 изнутри. Иначе говоря, блок 5 переходит в свободное состояние. Одновременно с этим электрический потенциал по проводу 21 (фиг.1) поступает на задний распорный пьезоэлектрический блок 3 (фиг.1 и 4), и он переходит в распертое состояние, то есть начинает давить на корпус 2 изнутри.

В четвертой фазе всасывания электрический потенциал перестает поступать по проводу 22 (фиг.1) на пьезоэлектрический блок движения 4 (фиг.1 и 4). Блок под действием сжимающего стержня 28 (фиг.3 и 5) переходит в свободное состояние, то есть уменьшает свою длину. При этом назад на небольшое расстояние перемещается передний распорный пьезоэлектрический блок 5 (фиг.1 и 4). Соответственно, он перемещает вниз плунжер 16 (фиг.1) или шток 31 (фиг.4) с активным сильфоном 30. Впускные клапаны 13 (фиг.1) и 14 (фиг.1 и 4) при этом открыты, открыты и дополнительные впускные клапаны 32 и 33 (фиг.4). Через открытые клапаны перекачиваемая среда заполняет пространство между плунжером 16 (фиг.1) и корпусом плунжера 17 или между активным сильфоном 30 (фиг.4) и корпусом 2. Перекачиваемая среда, попадающая в область под активным плунжером 30 (фиг.4) через дополнительные впускные клапаны 32 и 33, размывает и переносит наверх к выпускному клапану 15 механические примеси, осевшие в этой области.

Выпускной клапан 15 (фиг.1 и 4) в четвертой фазе всасывания - закрыт. В конце четвертой фазы всасывания электрический потенциал по проводу 21 (фиг.1) перестает поступать на задний распорный пьезоэлектрический блок 3 (фиг.1 и 4), и он переходит в свободное состояние.

Подобное чередование фаз при всасывании повторяется многократно до тех пор, пока рабочий орган вытеснителя перекачиваемой среды 12 (плунжер 16 на фиг.1 или активный сильфон 30 на фиг.4) не достигнет нижней мертвой точки. Момент достижения нижней мертвой точки определяют по нарастанию тока в проводе 22 (фиг.1). Также этот момент может контролироваться по датчику обратной связи нижнего положения рамки (на фигурах не показан).

Колебания плунжера 16 (фиг.1) или штока 31 (фиг.4) с активным сильфоном 30 вследствие колебаний распорного пьезоэлектрического блока 5 (фиг.1 и 4) сглаживаются вследствие соответствующего изгиба и распрямления пластинчатой пружины 20, выполненной на рамке 9. Это уменьшает возможность возникновения кавитации перекачиваемой среды, а также продольную вибрацию насоса 1.

При перекачке жидкостей в условиях высокого или переменного давления окружающей среды жидкость, заполняющая внутреннюю полость корпуса 2 (фиг.4), в которой движутся задний распорный пьезоэлектрический блок 3, пьезоэлектрический блок движения 4, передний распорный пьезоэлектрический блок 5, вытесняется в пассивный сильфон 34. Вследствие несжимаемости жидкости этот сильфон вместе с задним штоком 36 вследствие колебаний активного сильфона 30 синхронно с ним колеблется вперед-назад. Задний шток 36 при этом скользит в одном из отверстий перегородки 35, не позволяя гофрам пассивного сильфона 34 задевать за корпус 2.

Наиболее успешно заявленный пьезоэлектрический насос промышленно применим на транспорте и в промышленности при перекачивании жидкостей с высоким напором и относительно небольшой подачей, где по массогабаритным показателям и показателям эффективности использование насосов других типов затруднено.

Пьезоэлектрический насос, содержащий вытеснитель перекачиваемой среды, корпус, расположенные в корпусе задний распорный пьезоэлектрический блок, пьезоэлектрический блок движения, выполненный с возможностью перемещения относительно корпуса в направлении изменения своей длины, передний распорный пьезоэлектрический блок, отличающийся тем, что задний распорный пьезоэлектрический блок, пьезоэлектрический блок движения, передний распорный пьезоэлектрический блок соединены последовательно, а вытеснитель перекачиваемой среды соединен с передним распорным пьезоэлектрическим блоком.



 

Похожие патенты:

Изобретение относится к гидравлическим насосам, в частности к электромагнитным насосам возвратно-поступательного действия, и может быть использовано для перекачки и создания высокого давления текучих сред.

Изобретение относится к средствам для перекачивания малых количеств жидкости и может быть использовано в приборостроении для перемещения малых объемов жидкости в микроаналитических системах.

Изобретение относится к машиностроению, в частности двигателестроению, и может быть использовано для обеспечения жидким топливом. .

Изобретение относится к насосам с непосредственным приводом, переносным агрегатам, предназначенным для нагнетания рабочей жидкости в гидравлические системы механизмов аварийно-спасательного инструмента и других малогабаритных механизмов с высокими силовыми характеристиками.

Изобретение относится к двигателестроению, в частности к топливной аппаратуре двигателей внутреннего сгорания. .

Изобретение относится к насосам, использующим для своей работы электрическую энергию, в частности к электромагнитным насосам, у которых приводом или силовым элементом является электромагнит, использующий энергию накопительного конденсатора.

Изобретение относится к области добычи полезных ископаемых, а конкретно - к силовым агрегатам для привода насосных установок высокого давления, и может быть использовано для выполнения различных операций на нефтяных и газовых скважинах.

Изобретение относится к двигателестроению, в частности к приводам автомобильных компрессоров. .

Изобретение относится к области электротехники и машиностроения и может быть использовано в различных электропроводных устройствах, в частности в отбойных молотках, в устройствах для забивания свай, для развальцовки, в бурильной технике.

Изобретение относится к области гидравлических машин объемного вытеснения, в частности к конструкции привода погружных плунжерных насосов, применяемых для добычи пластовых жидкостей с больших глубин, преимущественно в нефтедобыче

Изобретение относится к машиностроению, в частности к поршневым насосам с электромагнитным приводом, предназначенным преимущественно для перекачивания жидкого топлива для отопительных приборов. Поршневой насос предназначен для подачи жидкости поршнем, выполненным с электромагнитным приводом. Поршень опирается на возвратную пружину. Напротив поршня расположен центральный фланец, в котором установлен корпус нагнетательного клапана. Перемещение корпуса позволяет изменять объем рабочей камеры насоса и тем самым регулировать подачу насоса от минимальной величины до максимальной. Входные отверстия гильзы, выполненные щелевыми, продольная ось которых расположена перпендикулярно оси перемещения поршня, позволяют увеличить величину максимальной подачи насоса. Достигаемым техническим результатом является улучшение энергоэффективности насоса за счет увеличения его максимальной цикловой подачи без изменения основных размеров деталей насоса и характеристик магнита. 2 ил.

(57) Изобретение относится к глубинным гидравлическим насосам, а именно к электромагнитным насосам. В нижнем торце корпуса 1 имеется клапанный узел 4 с запорными шарами 5 и установлен амортизатор 7. В корпусе 1 также размещена система поршней нагнетающих ступеней. Поршень 8 первой ступени, размещенный над амортизатором 7, выполнен в виде клапана с шаровым запорным органом (шары 9). В теле поршней 10, 11 второй и третьей ступеней размещены катушки индуктивности 12, 13 соответственно. Поршни имеют осевые отверстия 14 и отделены друг от друга камерами 15, 16 и 17. Насос снабжен дополнительной катушкой индуктивности 18. В выходной камере 19 размещен дополнительный выходной поршень 20. Шток 21 дополнительного выходного поршня 20 выполнен полым и заглублен в осевое отверстие дополнительной катушки 18. В боковых стенках выходной камеры имеются радиальные отверстия 22, расположенные под дополнительным выходным поршнем 20. Поршни 8, 10, 11 нагнетательных ступеней снабжены патрубками 23, торцы которых заглублены в осевые отверстия поршней последующих ступеней. Патрубок поршня третьей ступени заглублен в осевое отверстие дополнительной катушки 18. В осевых отверстиях поршней 10, 11 и в осевом отверстии дополнительной катушки 18 имеются ограничители, предотвращающие выход патрубков из отверстий. Патрубок поршня последней ступени взаимодействует со штоком 21 поршня 20. В основаниях патрубков имеются радиальные отверстия 24. Обеспечивается суммирование хода за счет применения многоступенчатой нагнетательной конструкции с раздельными поршнями. 1 з.п. ф-лы, 9 ил.

Изобретение относится к области машиностроения и может быть использовано в насосных установках для поднятия жидкостей с больших глубин объемными насосами, приводимыми в действие электродвигателями. Установка включает в себя насос объемного действия и погружной линейный вентильный электродвигатель, неподвижные и соответственно подвижные части соединены между собой. Статор электродвигателя и его подвижная часть (бегун) выполнены с возможностью возвратно-поступательного движения бегуна относительно статора. Полость электродвигателя связана с окружающей средой через фильтр, а с полостью насоса через уплотнение между штоком и корпусом. Статор электродвигателя в области между внешней поверхностью обмотки и внутренней поверхностью корпуса электродвигателя содержит продольные сквозные каналы, соединяющие полости, расположенные по обе торцовые стороны статора. Повышается срок службы установки и улучшается ее тепловой режим. 3 з.п. ф-лы, 2 ил.

Изобретение относится к средствам для откачки текучей среды преимущественно из нефтяных малодебитных скважин. Поршень электронасоса совмещен с бегуном 3, имеющим герметичную поперечную перегородку 6, расположенную во внутренней цилиндрической полости бегуна 3. В этой полости бегуна 3 находится неподвижный полый шток 7, сопряженный с внутренней цилиндрической поверхностью полости бегуна 3 через узел уплотнения 8, который расположен на внешней поверхности штока 7. Внутренняя полость штока 7 и связанная с ней внутренняя полость бегуна соединена каналом с рабочей камерой 20 насоса, сообщающейся с внешней перекачиваемой средой и с выходным трубопроводом через впускной 11 и выкидной клапаны 14 соответственно. Повышаются энергетические характеристики, повышается надежность и ресурс. 8 з.п. ф-лы, 5 ил.

Изобретение относится к области машиностроения, в частности к установкам с насосами объемного действия, приводимыми в действие погружными линейными электродвигателями. Установка содержит погружную часть, включающую в себя насос и погружной линейный вентильный электродвигатель. Подвижная часть (бегун) выполнена с возможностью возвратно-поступательного движения. Управляющий электронный блок состоит из наземной и погружной частей. Погружной блок выполнен в виде инвертора, размещенного в герметичном корпусе с нормальным давлением воздуха внутри. Выход инвертора электрически связан с наземной частью и обмоткой через гермовводы. Управляющий блок инвертора связан с чувствительными элементами датчика положения бегуна через дополнительные гермовводы. Содержит счетчик шагов бегуна. Наземный блок выполнен в виде последовательно соединенных входного выпрямителя, однофазного высокочастотного инвертора-регулятора и выходного выпрямителя. Повышаются энергетические показатели установки. 4 з.п. ф -лы, 2 ил.

Насос // 2527928
Изобретение касается насоса для нагнетания текучей среды. Насос включает в себя впуск, выпуск и камеру нагнетания. Между впуском и камерой нагнетания или между камерой нагнетания и выпуском расположен клапан (17). Клапан (17) имеет корпус (30) клапана с направленным в направлении выпуска седлом (32) клапана и взаимодействующий с седлом (32) клапана элемент (31a) клапана. Элемент (31a) клапана нагружен с предварительным напряжением относительно седла (32) клапана в закрытом положении клапана (17). Подъем элемента (31a) клапана против предварительного напряжения позволяет текучей среде проходить в направлении нагнетания. Корпус (30) клапана помещен в гнезде (15c) части (15) насоса. Насос, у которого снижено развитие шумов и вибраций, в соответствии с изобретением получается благодаря тому, что корпус (30) клапана при эксплуатации насоса обладает возможностью осевого перемещения относительно вмещающего его гнезда (15c). 8 з.п. ф-лы, 3 ил.

Изобретение относится к гидравлическому приводу (1) с регулированием количества и/или давления для преобразователя давления устройства высокого давления, состоящему по существу из двигательного привода с насосом для рабочей среды (10), а также блока управления. В качестве гидравлического привода (1) применяется по существу насос (11) постоянной подачи, соответственно, насос (11), который за каждый оборот подает постоянный объем, с приводом от серводвигателя (12), при этом серводвигатель (12) выполнен с возможностью электрического управления (15), регулирования и/или переключения с помощью расположенных на стороне низкого давления средств (13) и/или с помощью расположенных на стороне высокого давления средств (14). Технический результат - улучшение работы устройства высокого давления. 3 з.п.ф-лы, 1 ил.

Изобретение относится к области машиностроения, в частности к погружным установкам для добычи нефти из малодебитных скважин. Установка содержит линейный электродвигатель и насос с возвратно-поступательным действием рабочего органа (плунжера, поршня), связанного с подвижной частью электродвигателя (бегуном). Полость статора электродвигателя с обмоткой выполнена герметичной. Полость электродвигателя, образованная статором, корпусом и бегуном, заполнена жидкостью. Бегун перемещается в опорных элементах, расположенных в статоре. Установка снабжена торцевыми щитами между полостями насоса и электродвигателя, средствами защиты полости электродвигателя от механических примесей и фильтрами, имеющими характеристики фильтров тонкой очистки. Фильтры расположены в корпусе электродвигателя между статором и торцевыми щитами, внешняя поверхность торцевых щитов плотно соединена с корпусом, внутренняя поверхность торцевых щитов механически контактирует с поверхностью бегуна через средства защиты полости электродвигателя от механических примесей. Установка имеет повышенный срок службы за счет улучшения условий работы опорных узлов. 1 з.п. ф-лы, 1 ил.
Наверх