Способ определения толщины металлического покрытия



Способ определения толщины металлического покрытия

 


Владельцы патента RU 2452938:

Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН (RU)

Изобретение относится к области измерительной техники, а именно к способу определения толщины металлического покрытия, нанесенного на диэлектрическую основу, при котором зондируют металлическое покрытие электромагнитным сигналом излучателя. Повышение точности измерения толщины металлического покрытия является техническим результатом изобретения. Способ основан на измерении и преобразовании результирующей интенсивности двух интерференционных волн электромагнитных сигналов отражения и излучателя с последующим вычислением толщины с использованием математической формулы. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ, реализуемый волноводным толщиномером (см. В.А.Викторов и др. «Радиоволновые измерения параметров технологических процессов». 1989 г., стр.46), в котором о толщине листа судят по характеристикам (амплитуде) распространения электромагнитных волн в волноводах, в поле которых находится контролируемый лист.

Недостатком этого известного способа является сложность в конструкции волноводного датчика и в преобразовании информационного сигнала.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения толщины диэлектрического материала (см. патент РФ №2240504, 2004 г.). В устройстве, реализующем указанный способ, зондируют контролируемый материал, расположенный на диэлектрическом основании, электромагнитным сигналом излучателя. Улавливают отраженные от поверхностей материала и диэлектрического основания сигналы приемником. С выхода приемника суммарный сигнал, связанный с отражающими свойствами контролируемого материала и диэлектрического основания, а также расстоянием между поверхностью диэлектрического материала и излучателем (приемником), переносится в индикатор. В этом блоке путем преобразования энергетических освещенностей, создаваемых излучениями, отраженными от поверхностей контролируемого диэлектрического материала и диэлектрического основания, определяют толщину покрытия контролируемого материала.

Недостатком данного способа следует считать погрешность, обусловленную изменением энергетической освещенности, создаваемой излучением, отраженным от поверхности диэлектрического основания при изменении его электрофизических параметров. Задачей заявляемого технического решения является повышение точности измерения толщины металлического покрытия.

Поставленная задача решается тем, что в способе определение толщины металлического покрытия, нанесенного на диэлектрическую основу, использующем результирующую интенсивность 1 рез улавливаемых приемником электромагнитных сигналов излучателя и отраженного от поверхности покрытия при его зондировании электромагнитным сигналом излучателя, толщину металлического покрытия 6 определяют из формулы:

где I1 - интенсивность электромагнитного сигнала излучателя, I2 - интенсивность отраженного от поверхности металлического покрытия электромагнитного сигнала, λ - длина волны электромагнитного сигнала, γ - коэффициент когерентности, H - высота от диэлектрической основы до излучателя и приемника, l - расстояние между излучателем и приемником.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при зондировании контролируемого металлического покрытия, нанесенного на диэлектрическую основу, по измерению результирующей освещенности электромагнитного сигнала излучателя и отраженного от поверхности металлического покрытия электромагнитного сигнала определяют толщину покрытия.

Наличие в заявленном способе совокупности перечисленных существующих признаков позволяет решить поставленную задачу определения толщины металлического покрытия на основе использования результирующей интенсивности электромагнитного сигнала излучателя и отраженного от поверхности контролируемой среды электромагнитного сигнала с желаемым техническим результатом, т.е. высокой точностью измерения.

Устройство (см. чертеж), реализующее данное техническое решение, содержит генератор электромагнитных сигналов 1, излучатель 2, приемник 3, детектор 4 и измеритель-индикатор 5 для регистрации величины толщины металлического покрытия 6, нанесенного на диэлектрическую основу 7.

Суть предлагаемого способа заключается в определении толщины металлического покрытия путем измерения и преобразования электромагнитных сигналов излучателя и отраженного от поверхности металлического покрытия, нанесенного на диэлектрическую основу. При зондировании металлического покрытия электромагнитным сигналом излучателя, от поверхности покрытия отражается электромагнитный сигнал, наложение которого с электромагнитным сигналом излучателя в приемнике приводит к интерференции этих двух сигналов, т.е. взаимное усиление в одних точках пространства и ослабление в других. В силу этого для результирующей интенсивности Iрез этой интерференции можно записать:

где I1 и I2 - интенсивность волн электромагнитных сигналов излучателя и отраженного от поверхности покрытия соответственно, γ - степень когерентности, λ - длина волны электромагнитных сигналов, d2 и d1 - ходы волн электромагнитных сигналов отражения и излучателя соответственно.

В рассматриваемом случае ход d2 с определенной точностью можно выразить как:

d2=2(H-δ),

где H - высота (расстояние) от излучателя (приемника) до диэлектрической основы, δ - толщина металлического покрытия.

Здесь принимается, что излучатель и приемник расположены на одном расстоянии (высоте) от диэлектрической основы. В данном случае ввиду того, что в приемник поступает одновременно с отраженным от поверхности покрытия сигналом и электромагнитный сигнал излучателя, ход d1 должен соответствовать расстоянию между излучателем и приемником, т.е. l, где - l - расстояние между ними.

С учетом вышеприведенного рассуждения формулу (1) можно переписать как:

Отсюда видно, что при постоянных значениях I1, I2, γ, λ, H и l измерением Iрез можно определить толщину металлического покрытия.

Для этого в устройстве, реализующем предлагаемый способ, выходной сигнал генератора электромагнитных колебаний 1 с помощью излучателя 2 направляют в сторону металлического покрытия 6, нанесенного на диэлектрическую основу 7. После этого отраженный от поверхности металлического покрытия электромагнитный сигнал улавливают приемником 3. Одновременно с этим приемником улавливают электромагнитный сигнал излучателя. Здесь следует отметить, что излучатель и приемник располагаются в одной плоскости, т.е. на одной высоте от объекта контроля. Наложение этих двух сигналов в приемнике обусловливает интерференцию волн улавливаемых электромагнитных сигналов. Далее для измерения результирующей интенсивности данной интерференции волн выходной сигнал приемника после детектирования в детекторе 4, поступает в измеритель-индикатор 5, где по измеренным значениям результирующей интенсивности Iрез получают информацию о толщине металлического покрытия.

Таким образом, согласно предлагаемому способу на основе измерения результирующей интенсивности интерференционных волн электромагнитных сигналов отражения и излучателя можно обеспечить более высокую точность измерения толщины металлического покрытия, нанесенного на диэлектрическую основу.

Способ определения толщины металлического покрытия, нанесенного на диэлектрическую основу, при котором зондируют металлическое покрытие электромагнитным сигналом излучателя и улавливают приемником отраженный от поверхности контролируемого покрытия электромагнитный сигнал, отличающийся тем, что дополнительно улавливают приемником электромагнитный сигнал излучателя, измеряют результирующую интенсивность Iрез улавливаемых приемником этих двух электромагнитных сигналов и толщину δ металлического покрытия определяют из формулы:

где I1 - интенсивность электромагнитного сигнала излучателя, I2 - интенсивность отраженного от поверхности металлического покрытия электромагнитного сигнала, λ - длина волны электромагнитного сигнала, γ - коэффициент когерентности, Н - высота от диэлектрической основы до излучателя и приемника, l - расстояние между излучателем и приемником.



 

Похожие патенты:

Изобретение относится к способам определения влажности жидких углеводородов и топлив и может найти применение в экспресс-контроле влажности жидких органических сред, для чего берут контрольный образец жидкости с действительной и мнимой диэлектрическими проницаемостями, много большими, чем у исследуемого жидкого углеводорода, которые помещают в отдельные переплетенные между собой трубопроводы.

Изобретение относится к области электротехники, в частности к способу определения электропроводности и толщины полупроводниковых слоев на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев.

Изобретение относится к исследованию и анализу материалов, а именно к способам определения влажности зерна зерновых сельскохозяйственных культур, в том числе подсолнечника, кукурузы и рапса.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к средствам наблюдения за процессом нанесения покрытий в вакууме и может быть использовано в приборостроении, электронной промышленности и машиностроении для контроля скорости осаждения и состава осажденных покрытий.

Изобретение относится к измерительной технике, применяемой для измерения электрофизических параметров полупроводниковых материалов с использованием зондирующего электромагнитного излучения сверхвысокой частоты (СВЧ), и может быть применено для определения времени жизни неравновесных носителей заряда в полупроводниковых пластинах и слитках бесконтактным СВЧ методом.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации смесей различных веществ, находящихся в резервуарах, например технологических емкостях, измерительных ячейках и т.п.

Изобретение относится к способам и устройствам измерения концентрации и электрофизических параметров жидких дисперсионных сред и может быть использовано для контроля и регулирования электрофизических параметров и концентрации ферромагнитных частиц (ФМЧ) в жидкости в процессе производства изделий из ферромагнитных материалов, в химической и других областях промышленности

Изобретение относится к способам измерений и может быть использовано в сельском хозяйстве, мелиорации, при составлении земельного кадастра и т.п

Изобретение относится к измерительной технике и может быть использовано для измерения влагосодержания, а также других физических свойств (концентрации смеси, плотности) различных материалов и веществ, перемещаемых по ленточным конвейерам, транспортерам

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для дефектоскопии магистральных трубопроводов, заполненных газом, нефтью, нефтепродуктами под давлением

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами

Изобретение относится к области неразрушающего контроля и диагностики материалов и может быть использовано в тех областях науки и техники, где необходимо отслеживать состояние материалов без оказания тестового воздействия на них

Изобретение относится к технике обнаружения взрывчатых веществ, в частности, к способам обнаружения взрывчатых веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей
Наверх