Способ измерения расстояния до контролируемого объекта



Способ измерения расстояния до контролируемого объекта
Способ измерения расстояния до контролируемого объекта
Способ измерения расстояния до контролируемого объекта
Способ измерения расстояния до контролируемого объекта
Способ измерения расстояния до контролируемого объекта

 


Владельцы патента RU 2452978:

Институт проблем морских технологий Дальневосточного отделения Российской академии наук (статус государственного учреждения) (ИПМТ ДВО РАН) (RU)

Использование: при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала. Сущность: на контролирующем объекте генерируют и излучают периодический импульсный акустический сигнал вертикально ориентированной двухмодульной антенной, модули которой располагают симметрично относительно поверхности морского дна и возбуждают противофазно. Антенна устанавливается на дно моря. Излучение акустического сигнала синхронизируют с началом отсчета времени в точке приема на контролируемом объекте. На контролируемом объекте принимают акустический сигнал двумя приемниками. Один из приемников расположен непосредственно на грунте и в его качестве используют векторный приемник, на выходе которого измеряют вертикальную и горизонтальную компоненты вектора колебательной скорости. В качестве второго приемника используют направленный приемник звукового давления. По измеренным параметрам, с учетом предварительно измеренных плотности и скорости звука в придонном слое воды, а также плотности и скорости продольных волн в грунте и предварительно определенном значении частотного параметра, определяют расстояние до контролируемого объекта. Технический результат: уменьшение погрешности измерений.

 

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала.

Общеизвестен способ измерения расстояния гидроакустическим дальномером, в котором измеряемое расстояние r и время распространения t акустического сигнала в среде между излучателем и приемником связаны соотношением

где C - скорость звука в среде, имеющая смысл групповой скорости, усредненной по трассе распространения, если среда является неоднородной (Милн П.Х. «Гидроакустические системы позиционирования». Л.: Судостроение, 1989 г., с.49-60).

В водоеме типа мелкого моря (волновода) точки излучения и приема связаны целым набором лучевых траекторий, а время распространения изменяется от некоторого минимального, соответствующего максимальной групповой скорости CMAX в волноводе, до некоторого максимального, соответствующего минимальной групповой скорости Cmin, называемой обычно скоростью Эйри. Физически это означает уширение акустического сигнала, при этом погрешность акустического дальномера, работающего по алгоритму (1), становится недопустимо большой.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ измерения расстояния до контролируемого объекта (Патент РФ №2313803 «Способ измерения расстояния до контролируемого объекта», МПК G01S 15/08, 2006 г.). Указанный способ измерения расстояния использует понятие инвариантной скорости CИНВ, которая функционально выражается через фазовую Cф и групповую Cг скорости распространения акустического сигнала в водоемах типа волновода и для различных лучевых траекторий сохраняет постоянное значение. Для водоемов типа мелкого моря с отрицательным градиентом скорости звука C1(z) инвариантная скорость определяется соотношением

а фазовая скорость может быть определена через скорость звука в водной среде в придонной области C1(h) и угол скольжения β лучей в придонной области формулой

С учетом (2)-(3) искомое расстояние выражается через измеряемые параметры соотношением

Суть указанного способа заключается в одновременном измерении скорости звука в воде в придонной области C1(h), угла скольжения β в точке приема и группового времени tг запаздывания акустического сигнала, а в качестве инвариантной скорости предложено использовать скорость распространения придонной волны

где , , ρ1, C1(h), ρ2, C2 - измеренные предварительно плотность и скорость звука в придонном слое воды, плотность и скорость продольных волн в грунте соответственно.

Данный способ измерения расстояния до контролируемого объекта реализуется следующим образом.

На контролирующем объекте генерируют и излучают направленно под углом скольжения α=arccos(CИНВ/C1) периодический импульсный акустический сигнал, излучение которого синхронизируют с началом отсчета времени в месте приема на контролируемом объекте, причем возвышение излучателя над грунтом не превышает длины волны акустического излучения в воде λ1. На контролируемом объекте принимают акустический сигнал двумя приемниками, разнесенными на расстояние l, причем один из приемников расположен непосредственно на грунте и является векторным приемником, на выходе которого измеряют вертикальную uz и горизонтальную ur компоненты вектора колебательной скорости. В качестве второго приемника используют направленный приемник звукового давления с углом приема, равным критическому углу скольжения αкр=arccos(C1(h)/С2) для границы раздела вода - морское дно, на выходе которого измеряют звуковое давление P1(t), причем второй приемник размещают на расстоянии l от грунта, значительно большем длины волны акустического излучения λ1.

На основе измерений параметров принятых сигналов определяют групповое время tг запаздывания по формуле

где T1, T - предварительно определенные временные интервалы, причем T1<T, Т - период излучения импульсного сигнала, P1(t) - сигнал на выходе приемника.

На основе измеренных значений компонент вектора колебательной скорости uz, ur определяют угол скольжения в точке приема

- параметр, измеряемый с помощью векторного приемника, а искомое расстояние вычисляют по формулам (4)-(5).

Основной недостаток известного способа заключается в неэффективности возбуждения придонной волны на низких частотах, которые используются для измерения достаточно больших расстояний. Кроме того, скорость придонной волны определяется формулой (5) недостаточно точно и должна корректироваться в соответствии с экспериментальными данными в сторону уменьшения.

В основу изобретения положена задача разработать способ измерения расстояния, обладающий наименьшей погрешностью в условиях нерегулярного волновода типа мелкого моря с помощью акустических средств, наиболее эффективно работающих в придонной области.

Поставленная задача решается тем, что в способе измерения расстояния до контролируемого объекта на контролирующем объекте генерируют и излучают периодический импульсный акустический сигнал вертикально ориентированной двухмодульной антенной, модули которой располагаются симметрично относительно поверхности морского дна и возбуждаются противофазно, а сама антенна устанавливается на дно моря, глубина которого в месте установки определяется соотношением

где χ1 - значение частотного параметра, соответствующее первой резонансной частоте в системе волновод - полупространство. Излучение акустического сигнала синхронизируют с началом отсчета времени в месте приема на контролируемом объекте. На контролируемом объекте принимают акустический сигнал двумя приемниками, разнесенными на расстояние 1, причем один из приемников расположен непосредственно на грунте и является векторным приемником, на выходе которого измеряют вертикальную uz и горизонтальную ur компоненты вектора колебательной скорости. В качестве второго приемника используют направленный приемник звукового давления с углом приема, равным критическому углу скольжения αкр=arccos(C1(h)/C2) для границы раздела вода - морское дно, на выходе которого измеряют звуковое давление P1(t), причем второй приемник размещают на расстоянии l от грунта, значительно большем длины волны акустического излучения λ1.

На основе измерений параметров принятых сигналов определяют групповое время tг запаздывания по формуле (6)

где T1, Т - предварительно определенные временные интервалы, причем T1<T, Т - период излучения импульсного сигнала, P1(t) - сигнал на выходе приемника.

На основе измеренных значений компонент вектора колебательной скорости uz, ur определяют угол скольжения в точке приема по формуле (7)

- параметр, измеряемый с помощью векторного приемника,

а искомое расстояние вычисляют с использованием предварительно определенной инвариантной скорости CИНВ, измеренной фазовой скорости Cф и группового времени tг запаздывания по формуле (4)

Cф=C1(h)/cosβ,

в которой инвариантную скорость, равную скорости придонной волны, определяют соотношением

Значение частотного параметра χ1, соответствующее первой резонансной частоте, предварительно определяется известным способом из расчета корней дисперсионного уравнения, как это сделано в (Б.А.Касаткин, Н.В.Злобина «Корректная постановка граничных задач в акустике слоистых сред», М.: Наука, 2009 г., с.142). Так, например, для грунтов песчаного типа этот параметр равен χ1=2.7.

В заявленном способе измерения расстояния до контролируемого объекта общими существенными признаками для него и для его прототипа являются:

- на контролирующем объекте генерируют и излучают периодический импульсный акустический сигнал,

- синхронизируют излучение сигнала с началом отсчета времени на контролируемом объекте,

принимают акустический сигнал двумя приемниками, разнесенными на расстояние l,

- располагают один из приемников непосредственно на грунте,

- определяют на основе измерений параметров принятых сигналов групповое время запаздывания tг по формуле

- вычисляют искомое расстояние r с использованием предварительно определенной инвариантной скорости CИНВ, измеренной фазовой скорости Cф и группового времени tг запаздывания.

Сопоставительный анализ существенных признаков заявленного способа измерения расстояния до контролируемого объекта и прототипа показывает, что первый в отличие от прототипа имеет следующие отличительные признаки:

- излучают акустический сигнал вертикально ориентированной двухмодульной антенной, модули которой располагают симметрично относительно поверхности морского дна и возбуждают противофазно, а сама антенна устанавливается на дно моря, глубина которого в месте установки определяется соотношением

h=λ1χ1/2π,

где χ1 - значение частотного параметра, соответствующее первой резонансной частоте в системе волновод - полупространство,

- инвариантную скорость, равную скорости придонной волны, определяют соотношением

Данная совокупность общих и отличительных существенных признаков обеспечивает получение технического результата во всех случаях, на которые испрашивается правовая охрана. Именно такая совокупность существенных признаков заявляемого способа измерения расстояния до контролируемого объекта позволила существенно повысить эффективность возбуждения придонной волны в береговом клине за счет правильного выбора глубины моря в месте установки излучателя и резонансных свойств самого волновода, повысить отношение сигнал/шум в точке приема и уменьшить погрешность определения расстояния. Кроме того, скорость распространения придонной волны и равная ей инвариантная скорость, определенные уточненной формулой (9), меньше скорости звука в воде вблизи дна на 1.0-2.0% во всем диапазоне изменения параметров морского грунта, а потому лучше соответствуют экспериментальным данным.

На основе изложенного можно заключить, что совокупность существенных признаков заявленного изобретения имеет причинно-следственную связь с достигнутым техническим результатом, т.е. благодаря данной совокупности существенных признаков изобретения стало возможным решить поставленную задачу. Следовательно, заявленное изобретение является новым, обладает изобретательским уровнем, т.е. оно явным образом не следует из известных технических решений и пригодно для использования.

Способ измерения расстояния до контролируемого объекта реализуется следующим образом.

На контролирующем объекте излучают периодический импульсный акустический сигнал вертикально ориентированной двухмодульной антенной, модули которой располагают симметрично относительно поверхности морского дна и возбуждают противофазно, а сама антенна устанавливается на дно моря, глубина которого в месте установки определяется соотношением

h=λ1χ1/2π,

где χ1 - значение частотного параметра, соответствующее первой резонансной частоте в системе волновод - полупространство.

Излучение антенны синхронизируют с началом отсчета времени в точке приема на контролируемом объекте. При соответствующем выборе глубины моря в месте установки антенны и длины волны акустического излучения, которое легко реализуется в береговом клине переменной глубины, в волноводе возникает резонанс, значительно (до 30 дБ) увеличивающий уровень возбуждаемой придонной волны, которая распространяется в сторону контролируемого объекта.

На контролируемом объекте сигнал принимается двумя приемниками. В качестве приемника, расположенного непосредственно на грунте, используют векторный приемник, на выходе которого измеряют вертикальную uz и горизонтальную ur компоненты вектора колебательной скорости. В качестве второго приемника используют направленный приемник звукового давления с углом приема, равным критическому углу скольжения αкр=arccos(C1(h)/C2) для границы раздела вода - морское дно, на выходе которого измеряют звуковое давление P1(t), причем второй приемник размещают на расстоянии l от грунта, значительно большем длины волны (например, на порядок) акустического излучения λ1.

На основе измерений параметров принятых сигналов определяют групповое время tг запаздывания по формуле (6)

где T1, Т - предварительно определенные временные интервалы, причем T1<T, Т - период излучения импульсного сигнала, P1(t) - сигнал на выходе приемника.

На основе измеренных значений компонент вектора колебательной скорости uz, ur определяют угол скольжения в точке приема по формуле (7)

- параметр, измеряемый с помощью векторного приемника,

а искомое расстояние вычисляют по формуле (4)

Cф=C1(h)/cosβ,

в которой инвариантную скорость, равную скорости придонной волны, определяют соотношением

Использование заявленного способа измерения расстояния до контролируемого объекта позволило существенно увеличить уровень возбуждаемой придонной волны (примерно на 30 дБ) в месте расположения контролирующего объекта и снизить на 1.0-2.0% погрешность измерения расстояния в водоемах типа мелкого моря с большими дисперсионными искажениями акустического сигнала.

Способ измерения расстояния до контролируемого объекта, при котором на контролирующем объекте генерируют и излучают периодический импульсный акустический сигнал, излучение которого синхронизируют с началом отсчета времени в точке приема на контролируемом объекте, принимают акустический сигнал на контролируемом объекте двумя приемниками, разнесенными на расстояние l, значительно большее длины волны акустического излучения λ1, причем один из приемников, расположенный непосредственно на грунте, является векторным приемником, на выходе которого измеряют вертикальную uz и горизонтальную ur компоненты вектора колебательной скорости, в качестве второго приемника используют направленный приемник звукового давления с углом приема, равным критическому углу скольжения αкр=arccos(C1(h)/C2) для границы раздела вода - морское дно, на выходе которого измеряют звуковое давление P1(t), на основе измерений параметров принятых сигналов определяют групповое время tг запаздывания по формуле

где T1, T - предварительно определенные временные интервалы, причем T1<T, Т - период излучения импульсного сигнала; P1(t) - сигнал на выходе приемника звукового давления, на основе измеренных значений компонент вектора колебательной скорости uz, ur определяют угол скольжения в точке приема


- параметр, измеряемый с помощью векторного приемника, а искомое расстояние вычисляют с использованием предварительно определенной инвариантной скорости Синв, измеренной фазовой скорости Сф и группового времени tг запаздывания по формуле
Cф=C1(h)/cosβ,
отличающийся тем, что излучают периодический импульсный акустический сигнал вертикально ориентированной двухмодульной антенной, модули которой располагают симметрично относительно поверхности морского дна и возбуждают противофазно, сама антенна устанавливается на дно моря, глубина которого в месте установки определяется соотношением
h=λ1χ1/2π,
где χ1 - предварительно определенное значение частотного параметра, соответствующее первой резонансной частоте в системе волновод - полупространство, а инвариантную скорость, равную скорости придонной волны, определяют соотношением

где ρ1212, c12=C1(h)/C2, ρ1, C1(h), ρ2, C2 - измеренные предварительно плотность и скорость звука в придонном слое воды, плотность и скорость продольных волн в грунте соответственно.



 

Похожие патенты:

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала.

Изобретение относится к области навигации, а более конкретно к определению координат преимущественно подводных аппаратов для позиционирования подводных объектов при обследовании морских объектов хозяйственной деятельности.

Изобретение относится к области гидроакустических навигационных систем и может быть использовано для навигационного обеспечения подводных аппаратов. .

Изобретение относится к области звукодальнометрии и акустического управления и может быть использовано для измерения расстояний до объектов, перемещающихся во внутритрубных пространствах.

Изобретение относится к области подводной навигации, а именно к определению координат подводного объекта. .

Изобретение относится к области подводной навигации, а именно к определению координат подводного объекта. .

Изобретение относится к области гидроакустических навигационных систем и предназначено для навигационного обеспечения подводных аппаратов повышенной дальности действия.

Изобретение относится к области звукодальнометрии и акустического управления и может быть использовано для измерения расстояний до объектов, перемещающихся во внутритрубных пространствах без нарушения целостности трубопровода.

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в водоемах малой глубины (типа мелкого моря) с большими дисперсионными искажениями акустического сигнала.

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в водоемах типа мелкого моря с большими дисперсионными искажениями акустического сигнала.

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем с повышенной точностью и дальностью действия, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала

Изобретение относится к гидроакустике и может быть использовано при разработке гидроакустических дальномерных систем, предназначенных для работы в мелком море с большими дисперсионными искажениями акустического сигнала

Изобретение относится к области гидроакустики

Изобретение относится к области гидроакустических навигационных систем и может быть использовано для навигационного обеспечения подводных аппаратов повышенной дальности действия, например, работающих в ледовых условиях, затрудняющих доступ к ним обеспечивающего судна, и также может быть использовано при проведении сейсмических и геологоразведочных работ на морском дне

Изобретение относится к гидроакустике, а именно к гидроакустическим навигационным средствам, и может быть использовано для обеспечения навигации подводных объектов

Изобретение относится к области навигации, а именно к определению координат подводных объектов

Изобретение относится к области гидроакустических навигационных систем и может быть использовано для навигационного обеспечения подводных аппаратов, работающих в ледовых условиях, затрудняющих доступ к ним обеспечивающего судна, и также может быть использовано при проведении сейсмических и геологоразведочных работ на морском дне с использованием буксируемых или телеуправляемых подводных аппаратов

Использование: изобретение относится к области гидроакустики и может быть использовано при разработке гидроакустических навигационных систем повышенной точности, работающих при наличии отражающих границ раздела. Сущность: гидроакустическая навигационная система содержит навигационную базу, включающую расположенный на береговом посту блок формирования излучаемых сигналов, выходы которого соединены с расположенными на дне симметрично относительно судового хода двумя гидроакустическими излучателями с различными несущими частотами излучаемых сигналов, а также бортовую аппаратуру, включающую приемоусилительный тракт, блок обработки принятых сигналов и индикатор, при этом приемоусилительный тракт выполнен одноканальным в виде ненаправленного гидрофона с подключенным к его выходу предварительным усилителем, а блок обработки принятых сигналов выполнен в виде подключенных к выходу предварительного усилителя двух полосовых фильтров, настроенных на частоты соответствующих гидроакустических излучателей, мультипликативного смесителя, подключенного к выходам полосовых фильтров, фильтра нижних частот, подключенного к выходу мультипликативного смесителя, частотных фильтров-дискриминаторов, входы которых подключены к выходу фильтра нижних частот, и сумматора, входы которого подключены к выходам частотных фильтров-дискриминаторов, а выход - к входу индикатора. Техническим результатом изобретения является повышение надежности определения навигационных параметров и уменьшение трудоемкости выполнения калибровки системы. 1 ил.

Эхолот // 2523101
Использование: изобретение относится к гидроакустическим системам определения глубины и к системам навигации и может быть использовано в эхолотах с автоматическим адаптивным обнаружением эхо-сигналов от дна и измерением глубины с привязкой к географическим координатам места измерения. Сущность: эхолот содержит ЭВМ 1, усилитель 2 мощности, приемник 3 акустических эхо-сигналов, приемник 4 сигналов спутниковых радионавигационных систем, переключатель 5 «прием-передача», электроакустический преобразователь 6, аналого-цифровой преобразователь 7 и дисплей 8. Первый вход ЭВМ 1 соединен с выходом преобразователя 7, а второй - с выходом приемника 4. Первый выход ЭВМ 1 соединен с входом дисплея 8, второй - с входом управления приемника 3, третий - с входом усилителя 2, а четвертый - с управляющим входом переключателя 5. Сигнальный вход переключателя 5 соединен с выходом усилителя 2, вход-выход - с входом-выходом преобразователя 6, а выход - с сигнальным входом приемника 3, выход которого соединен с входом преобразователя 7. Технический результат: повышение помехозащищенности и надежности эхолота, расширение его функциональных возможностей. 1 ил.

Использование: изобретение относится к области подводной навигации и может быть применено в системах определения и контроля местоположения подвижных подводных объектов, преимущественно маломерных. Сущность: система содержит группировку расположенных на водной поверхности радиогидроакустических буев, связанных радиоканалами со станцией контроля и гидроакустическими каналами - с подводным объектом. Каждый из буев группировки содержит приемник сигналов внешней навигационной системы, обеспечивающий возможность определения текущих координат своего местоположения и формирования временных меток бортовой шкалы времени в соответствии со шкалой времени внешней навигационной системы, гидроакустическую аппаратуру, обеспечивающую возможность приема информационных гидроакустических сигналов, поступающих с подводного объекта, а также средства, обеспечивающие возможность определения задержек распространения принимаемых информационных гидроакустических сигналов, и средства радиосвязи со станцией контроля, обеспечивающие возможность передачи на нее данных об указанных задержках и данных о текущем местоположении буя. Станция контроля содержит средства, обеспечивающие возможность определения координат подводного объекта на основании данных о задержках распространения информационных гидроакустических сигналов и данных о текущем местоположении буев. В отличие от прототипа, каждый из буев группировки выполнен с обеспечением возможности работы в активном режиме ведущего в группировке, при котором его гидроакустическая аппаратура излучает на подводный объект общий для всей группировки запросный гидроакустический сигнал, а аппаратура подводного объекта выполнена с обеспечением возможности приема запросного гидроакустического сигнала и его переизлучения на все буи группировки. Технический результат: создание системы определения и контроля местоположения подводного объекта, характеризующейся экономией ресурса батарей буев и отсутствием на подводном объекте средств формирования шкалы времени, синхронизированной с единой шкалой времени группировки буев. 2 ил.
Наверх