Способ получения метил(фенэтил)дихлорсилана

Изобретение относится к области получения метил(фенэтил)дихлорсилана, применяемого в качестве мономера при получении морозо-, термо- и радиационно стойких полимеров. Предложен способ получения метил(фенэтил)дихлорсилана, при котором сначала стирол смешивают с катализатором - комплексом тетра-кис-(трифенилфосфин)платина(0), затем подают метилдихлорсилан (МДС) при температуре в реакторе 90-100°С. МДС подают с такой скоростью, чтобы температура реакционной смеси не превышала 140°С. По окончании подачи смесь выдерживают 1-2 часа при 130-140°С. Целевой продукт выделяют вакуумной перегонкой. Технический результат - предложенный способ позволяет получить целевой продукт с высоким выходом за значительно меньшее время по сравнению с ближайшим аналогом. Реакция протекает без индукционного периода, что позволяет использовать предлагаемый способ в промышленном масштабе. 3 пр.

 

Предлагаемое изобретение относится к области получения метил(фенэтил)дихлорсилана, который может быть использован в промышленности СК в качестве мономера и/или сомономера морозо-, термо-, радиационно стойких полимеров.

Так как наличие в молекулярном составе (α-метилбензил)метилдихлорсилана (α-изомер) третичного атома углерода определяет более низкую стойкость к термическому окислению по сравнению с метил(фенэтил)дихлорсиланом (β-изомер), очевидно, что использование смеси изомеров в качестве мономеров приводит к ухудшению основного свойства термостойких полимеров.

Известен способ получения метил(фенэтил)дихлорсилана взаимодействием стирола и метилдихлорсилана (МДС) в присутствии платиносодержащего катализатора с добавлением карбоновых кислот (пат. США №6054602, опубл. 2000 г., C07F 7/8).

По данным ГЖХ, приведенным авторами патента, в результате реакции получают смесь изомеров. Наибольшая селективность реакции гидросилилирования по β-изомеру достигается в присутствии платиносодержащего катализатора и уксусной кислоты. Реакционную смесь выдерживают 30 минут при 50°C. Содержание целевого продукта в смеси изомеров на выходе составляет 98,4%. При этом выход α- и β-аддуктов реакции гидросилилирования составляет всего 10,3% при степени конверсии стирола 11% (см. пример 2, приведенный в описании патента).

Недостатком данного способа является низкий выход целевого продукта. Кроме того, выделение метил(фенэтил)дихлорсилана из смеси изомеров технологически затруднено из-за малой разности температур кипения.

Известен способ получения метил(фенэтил)дихлорсилана, при котором стирол взаимодействует с МДС в присутствии раствора платиносодержащего катализатора в толуоле и этанольного раствора мочевины. Реакцию проводят в течение 20 минут при 100°C (пат. США №6326506, опубл. 2001 г., C07F 7/8).

В качестве платиносодержащего катализатора используют комплекс платина [Pt0]-дивинилтетраметилдисилоксан с содержанием платины 0,04 вес.%.

В результате реакции гидросилилирования получают смесь α- и β-аддуктов с низким содержанием (α-метилбензил)метилдихлорсилана. По данным ГЖХ, приведенным авторами изобретения, соотношение β-:α-=102:1. При этом суммарный выход α- и β-изомеров составляет 61% при степени конверсии стирола 64% (см. пример 14, приведенный в описании патента).

Недостатком описанного способа является недостаточно высокий выход целевого продукта. Кроме того, наличие α-изомера усложняет выделение метил(фенэтил)дихлорсилана из реакционной смеси.

Наиболее близким аналогом по достигаемому результату и по технической сущности является способ получения метил(фенэтил)дихлорсилана, в котором взаимодействие стирола и метилдихлорсилана протекает в присутствии платиносодержащего катализатора - комплекса тетра-кис-(трифенилфосфин)платина(0) (ТТП). Смесь, содержащую стирол, метилдихлорсилан и ТТП, нагревают до 45-52°C. Реакцию проводят в течение 12 часов. Затем целевой продукт выделяют из реакционной смеси ректификацией. Выход целевого продукта составляет 97% по стиролу. Состав подтверждают данными ПМР (Helvetica Chimica Acta, 54, 5, 1971, s.1304-1310).

Реакцию проводят при соотношении стирола и гидридсилана (МДС), равном 1:2. Концентрация катализатора 3,5·10-4 м.

Недостатком данного способа является то, что процесс протекает с индукционным периодом, с последующим бурным выделением тепла, в связи с чем описанный способ плохо контролируется и неприемлем для использования в производственных условиях (не технологичен). Кроме того, способ требует больших временных затрат.

Целью предлагаемого технического решения является разработка контролируемого высокоэффективного способа получения метил(фенэтил)дихлорсилана, исключающего индукционный период реакции.

Поставленная задача достигается тем, что в предлагаемом способе получения метил(фенэтил)дихлорсилана взаимодействием стирола и метилдихлорсилана в присутствии платиносодержащего катализатора - комплекса тетра-кис-(трифенилфосфин)платина(0), сначала стирол смешивают с катализатором, а затем подают МДС при температуре в реакторе 90-100°C, при этом температуру реакционной смеси в процессе реакции гидросилилирования регулируют скоростью подачи МДС.

Сущность предлагаемого способа заключается в следующем. В реактор, снабженный мешалкой, обратным холодильником, капельной воронкой и термометром, помещают стирол, затем либо добавляют катализатор и смесь нагревают до 90-100°C, либо катализатор вводят в нагретый до 90-100°C стирол, после чего вводят метилдихлорсилан. МДС подают с такой скоростью, чтобы температура реакционной смеси не превышала 140°C. По окончании подачи смесь выдерживают 1-2 часа при 130-140°C. Целевой продукт выделяют вакуумной перегонкой. По данным ЯМР и ГЖХ выход метил(фенэтил)дихлорсилана составляет 90-93%.

Процесс проводят при эквимолярном соотношении стирола и гидридсилана (МДС). Катализатор добавляют как в виде сухого порошка, так и виде суспензии в стироле, исходя из отношения [Pt]/[c=c]=5·10-5-1·10-4.

Состав и структуру конечного продукта подтверждают, снимая спектры ЯМР 1H и 29Si высокого разрешения на спектрометре «Bruker Spectrospin» AM-500 при частоте 470,6 МГц с накоплением до 1000 сканов в стандартных ампулах диаметром 5 мм и 10 мм с внутренним эталоном тетраметилсиланом. Готовят 10 и 50% растворы метил(фенэтил)дихлорсилана в гексадейтеробензоле.

Спектр ЯМР 1H: 0,92 (3Н, с), 1,70 (2Н, м), 3,08 (2Н, м), 7,43-7,54 (5Н, м). Получают продукт с содержанием основного вещества 99,5%.

Спектр ЯМР 29Si: +31,56.

Хроматографический анализ продукта проводят на газожидкостном хроматографе ЛХМ-8МД. Колонка с внутренним диаметром 3 мм и длиной 2 м. Твердый носитель - силилированный Cilite 545 (0,2-0,4 мм). Неподвижная фаза - 20% СКТФТ-50. Газ-носитель - гелий.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1

В четырехгорлую колбу, снабженную механической мешалкой, обратным холодильником, капельной воронкой и термометром, помещают 92 мл (0,8 моль) стирола и 0,08 г (6·10-5 моль) катализатора тетра-кис-(трифенилфосфин)платина(0). Содержимое колбы нагревают до 90°C и подают 85 мл (0,8 моль) метилдихлорсилана, регулируя скорость подачи таким образом, чтобы смесь слабо кипела. По окончании подачи смесь выдерживают 2 часа при 130°C. Вакуумной перегонкой получают 163 г метил(фенэтил)дихлорсилана. Выход - 93%.

Пример 2

В условиях примера 1 сначала нагревают 92 мл (0,8 моль) стирола до 90°C, затем помещают 0,05 г (4·10-5 моль) катализатора ТТП. После чего подают 85 мл (0,8 моль) метилдихлорсилана, регулируя скорость подачи таким образом, чтобы смесь слабо кипела. По окончании подачи смесь выдерживают 1,5 часа при 140°C. Вакуумной перегонкой получают 159 г метил(фенэтил)дихлорсилана. Выход - 91%.

Пример 3

В условиях примера 1 сначала нагревают 92 мл (0,8 моль) стирола до 100°C, затем помещают 0,1 г (8·10-5 моль) катализатора ТТП в виде суспензии в стироле. После чего подают 85 мл (0,8 моль) метилдихлорсилана, регулируя скорость подачи таким образом, чтобы смесь слабо кипела. По окончании подачи смесь выдерживают 1 час при 130°C. Вакуумной перегонкой получают 158 г метил(фенэтил)дихлорсилана. Выход - 90%.

Таким образом, предлагаемый способ является высокоэффективным, так как позволяет получить целевой продукт с высоким выходом за значительно меньшее время по сравнению с ближайшим аналогом. Реакция протекает без индукционного периода, что позволяет использовать предлагаемый способ в промышленном масштабе.

Способ получения метил(фенэтил)дихлорсилана путем взаимодействия стирола и метилдихлорсилана (МДС) при повышенной температуре в присутствии платиносодержащего катализатора - комплекса тетра-кис-(трифенилфосфин)платина(0) с последующим выделением целевого продукта, отличающийся тем, что сначала стирол смешивают с катализатором, а затем подают МДС при температуре реакционной смеси 90-100°С, при этом температуру реакционной смеси в процессе реакции гидросилилирования регулируют скоростью подачи МДС.



 

Похожие патенты:

Изобретение относится к области химической технологии кремнийорганических соединений. .

Изобретение относится к способу получения фенилсодержащих хлорсиланов на основе процесса Гриньяра. .
Изобретение относится к области гидро- и олеофобных средств, предназначенных для защиты строительных материалов и конструкций от вредного воздействия окружающей среды, а также к экологически безопасным водоэмульсионным композициям на их основе.

Изобретение относится к процессам Гриньяра для получения фенилсодержащих хлорсилановых продуктов. .

Изобретение относится к химической технологии кремнийорганических соединений. .
Изобретение относится к области гидро- и олеофобных средств, предназначенных для защиты строительных материалов и конструкций от вредного воздействия окружающей среды.

Изобретение относится к способам синтеза замещенных в положении 3 (- ) пропилсиланов. .

Изобретение относится к способам получения органохлорсиланов, в частности к прямому синтезу метилхлорсиланов (МХС) - основного сырья для промышленного производства кремнийорганических олигомеров и полимеров.

Изобретение относится к способам приготовления контактной массы (КМ) для синтеза метилхлорсиланов на основе порошков кремния, меди - катализатора и промоторов Al, Zn, Sn, Sb и может быть использовано в области синтеза органохлорсиланов.
Изобретение относится к химической технологии кремнийорганического синтеза

Изобретение относится к способу крекинга высококипящих полимеров для увеличения выхода и минимизации отходов в процессе получения трихлорсилана. Предложен способ крекинга полихлорсилана и/или полихлорсилоксана, включающий стадии а) получения смеси, содержащей полихлорсилан и/или полихлорсилоксан; б) удаления твердых частиц из этой смеси с получением чистой смеси; и в) рециркуляции полученной чистой смеси в дистилляционный аппарат, и крекинг полихлорсилана и/или полихлорсилоксана в дистилляционном аппарате с получением трихлорсилана, тетрахлорсилана или их комбинации. Технический результат - уменьшение отходов и увеличение выхода хлорсилановых мономеров в процессе получения трихлорсилана. 12 з.п. ф-лы, 1 ил.

Изобретение относится к асфальту и асфальто-минеральным композициям, приемлемым для дорожных покрытий или нанесения покрытий на поверхность сооружений. Асфальто-минеральная композиция содержит 100 мас.ч. минерального заполнителя и от 3 до 20 мас.ч. асфальта, содержащего от 0,001 до 5% мас., по меньшей мере, одного катионного кремнийорганического соединения из расчета на массу асфальта. Изобретение также относится к асфальтовой композиции, содержащей асфальт и катионное кремнийорганическое соединение, водной асфальтовой композиции, включающей эмульсию, содержащую асфальт, диспергированный в воде, и катионное кремнийорганическое соединение, водной асфальто-минеральной композиции, включающей эмульсию, минеральный заполнитель и катионное кремнийорганическое соединение, асфальтовой мембране, включающей, по меньшей мере, 50% мас. асфальта, минеральный наполнитель и катионное кремнийорганическое соединение, и к композиции, используемой для асфальтовых кровельных систем, включающей, по меньшей мере, 50% мас. асфальта, минеральный наполнитель, волоконный усиливающий мат и катионное кремнийорганическое соединение. Количество катионного кремнийорганического соединения во всех композициях составляет от 0,001 до 5% мас. из расчета на массу асфальта. Композиции проявляют улучшенную адгезию асфальтового связующего к заполнителям. 6 н. и 10 з.п. ф-лы, 3 ил., 15 табл., 13 пр.
Изобретение относится к способам получения фторированных силанов. Предложен способ получения бромдифторметил(триметил)силана бромированием дифторметил(триметил)силана при освещении лампой накаливания в интервале температур 50-85°C при мольном соотношении дифторметил(триметил)силан : Br2, равном 1:0,7-1. Целевой продукт выделяют из реакционной смеси перегонкой, выход составляет 90-95% при конверсии исходного дифторметил(триметил)силана 60-90%. Технический результат - пригодный к промышленному использованию способ получения бромдифторметил(триметил)силана с высоким выходом и простым выделением конечного продукта. 3 пр.

Изобретение относится к способам переработки отходов процесса синтеза хлорсиланов и алкилхлорсиланов. Предложен способ твердофазной нейтрализации жидких и твердых отходов синтеза хлорсиланов и алкилхлорсиланов, заключающийся в том, что жидкие и твердые отходы любого состава и в любом соотношении обрабатывают твердым реагентом, выбранным из карбонатов щелочных и щелочноземельных металлов и их природных смесей нестехиометрического состава в массовом соотношении не менее чем 1,0:1,2 в расчете на сумму всех отходов в размольном оборудовании до получения твердого нейтрализованного продукта. Температура процесса твердофазной нейтрализации 100÷165°C обеспечивается за счет протекания экзотермических реакций нейтрализации отходов и поддерживается постоянной за счет испарения жидкой части отхода. Жидкая часть смеси отходов выделяется в неизменном виде. Технический результат - способ прост и безопасен, позволяет сократить энергетические затраты и исключить образование сточных вод. 3 з.п. ф-лы, 1 табл., 10 пр.

Изобретение относится к способам получения триметил(трифторметил)силана. Предложено получение триметил(трифторметил)силана взаимодействием триметил(трихлорметил)силана с фторирующим агентом, выбранным из ряда: трехфтористая сурьма, активированная бромом, или трехфтористая сурьма, активированная пятихлористой сурьмой, или газообразный фтористый водород в присутствии пятихлористой сурьмы; взаимодействие проводят при нагревании в инертном фторированном растворителе, таком как п-хлорбензотрифторид, или же без растворителя. Технический результат - возможность получения триметил(трифторметил)силана с высоким выходом без использования озоноопасных фреонов и сложного аппаратурного оформления. 3 пр.

Изобретение относится к способам получения триметилфторсилана. Предложен способ получения триметилфторсилана из гексаметилдисилоксана и кремнефтористоводородной кислоты, в котором гексаметилдисилоксан подвергают взаимодействию с 10-30%-ным раствором кремнефтористоводородной кислоты при нагревании в присутствии кислоты, такой как серная или пара-толуолсульфокислота. Технический результат - предложенный способ технологичен и экологичен, так как не требует специального оборудования и позволяет утилизировать отходы многотоннажного производства фосфорных удобрений - растворы кремнефтористоводородной кислоты. 3 пр.

Изобретение относится к способам получения алкенилгалогенсиланов. Предложен способ получения алкенилгалогенсиланов путем превращения алкенилгалогенида, выбранного из группы, включающей винилгалогенид, винилиденгалогенид и аллилгалогенид, с галогенсиланом, выбранным из группы, включающей моногалогенсилан, дигалогенсилан и тригалогенсилан, в газовой фазе в реакторе, представляющем собой реакционную трубу (1) с входным отверстием (2) на одном конце и выходным отверстием (3) на другом конце, а также снабженном концентрическим распылителем (4), который имеет центральный ввод (5) для реагента (7) и ввод (6) для других реагентов (8), окружающий центральный ввод (5), причем концентрический распылитель (4) установлен у входного отверстия (2) и выходит внутрь реакционной трубы (1). Для осуществления способа алкенилгалогенид впрыскивают в реакционную трубу (1) через центральный ввод (5), а галогенсилан через ввод (6), окружающий центральный ввод (5), причем соответствующие потоки перемещаются через реакционную трубу (1) в направлении к выходному отверстию (3). Горячую реакционную смесь на конце реакционной трубы (1) со стороны продукта резко охлаждают жидким сырым продуктом. Предложен также реактор для осуществления заявленного способа. Технический результат - предложенный способ позволяет получать алкенилгалогенсиланы с высоким выходом и высокой селективностью. 2 н. и 12 з.п. ф-лы, 1 ил.

Изобретение относится к способам получения алкенилгалогенсиланов. Предложен способ получения алкенилгалогенсиланов путем превращения алкенилгалогенида, выбранного из группы, включающей винилгалогенид, винилиденгалогенид и аллилгалогенид, с галогенсиланом, выбранным из группы, включающей моногалогенсилан, дигалогенсилан и тригалогенсилан, в исходном мольном отношении галогенсилана к алкенилгалогениду между 1,0 и 10 в газовой фазе в реакторе, представляющем собой реакционную трубу (1) с входным отверстием (2) на одном конце и выходным отверстием (3) на другом конце, а также снабженном газоподводящим устройством (4), которое имеет несколько мест ввода газа (5), расположенных вдоль продольной оси реакционной трубы (1) на определенном расстоянии друг от друга и выходящих внутрь реакционной трубы (1). Для осуществления способа моногалогенсилан, дигалогенсилан или тригалогенсилан подают через входное отверстие (2) в реакционную трубу (1), по которой он перемещается в направлении к выходному отверстию (3), в то время как винилгалогенид, винилиденгалогенид или аллилгалогенид дробно вводят в перемещающийся внутри реакционной трубы (1) газовый поток через места ввода газа (5). Горячую реакционную смесь на конце реакционной трубы (1) со стороны продукта резко охлаждают жидким сырым целевым продуктом. Предложен также реактор для осуществления заявленного способа. Технический результат - способ позволяет получать алкенилгалогенсиланы с высоким выходом и высокой селективностью. 2 н. и 14 з.п. ф-лы, 1 ил.
Наверх