Плазменный эмиттер электронов



Плазменный эмиттер электронов
Плазменный эмиттер электронов
Плазменный эмиттер электронов

 


Владельцы патента RU 2454046:

Государственное образовательное учреждение высшего профессионального образования "Северо-Кавказский государственный технический университет" (RU)

Изобретение относится к технике получения электронных пучков с большим поперечным сечением и может быть использовано в источниках электронов. Техническим результатом изобретения является увеличение энергетической эффективности и времени непрерывной работы плазменного эмиттера электронов. В плазменном эмиттере электронов диаметр отверстия связи dk в плоском катоде увеличен, так что выполняется условие 1k<<dk≤da (где lk - длина катодного падения потенциала, da - внутренний диаметр цилиндрического анода), а формирователь либо выполнен из диэлектрического материала, либо, если он выполнен из металла, электрически изолирован от остальных электродов. 3 ил.

 

Изобретение относится к технике получения электронных пучков с большим поперечным сечением и может быть использовано в источниках электронов для электронно-лучевых технологий в электронике и машиностроении.

Известен плазменный эмиттер электронов (Мартенс В.Я. Диссертация на соискание ученой степени д. т.н. «Объемная стационарная плазма малой плотности и ее использование для получения электронных и ионных пучков большого сечения», Ставрополь, 2002 г., с.116-117; дата поступления в библиотеку 30.01.2003 г.). Известный эмиттер позволяет получать пучки электронов с большим поперечным сечением с использованием плазмы тлеющего разряда в широком диапазоне давлений газа (1-10-3 Па) и характеризуется непрерывным действием и простой конструкцией, не требующей использования накаленных элементов. Известный эмиттер содержит полый катод, цилиндрический анод, магнит, плоский катод с отверстием связи, формирователь плазмы в виде полого цилиндра и кольцевой электрод для управления равномерностью радиального распределения плотности эмитирующей плазмы. Существенным недостатком указанного устройства является низкая плотность тока эмиссии, связанная с потерей электронов на формирователе и кольцевом электроде, так как на эти электроды подается положительный электрический потенциал.

Наиболее близким по технической сущности является плазменный эмиттер электронов (Крейндель Ю.Е., Мартенс В.Я., Съедин В.Я., Гавринцев С.В. Электронная пушка непрерывного действия с плазменным катодом большой площади - Приборы и техника эксперимента, 1982, №4, с.178-180), показанный на фиг.1.

Известное устройство содержит полый катод 1, цилиндрический анод 2, магнит 3, плоский катод 4 с отверстием связи, формирователь (экспандер) 5, перераспределяющий элемент 6, эмиссионный электрод 7 (металлическая сетка). При подаче напряжения от блока питания 8 на электроды разрядной камеры между катодами 1, 4 и цилиндрическим анодом 2 зажигается отражательный разряд. Через отверстие связи диаметром dk около 4 мм плазма отражательного разряда проникает в формирователь 5. Возможны два режима создания плазмы в формирователе электронного эмиттера (Мартенс В.Я. Проникновение плазмы из отражательного разряда в полый электрод при низком давлении газа. Журнал технической физики, 2002, т.72, вып.11, с.44-51; Крейндель Ю.Е.; Мартенс В.Я., Съедин В.Я. Исследование плазмы электронного эмиттера непрерывного действия с большой эмитирующей поверхностью. Источники электронов с плазменным эмиттером. - Новосибирск, Наука, 1983, с 25-33). При давления газа в формирователе р≥5×10-2 Па реализуется режим работы эмиттера, называемый режимом объемного разряда. Для этого режима характерна высокая энергетическая эффективность. Однако высокое давление газа не позволяет использовать этот режим работы в качестве основного при работе эмиттера в реальных источниках электронов из-за уменьшения электрической прочности ускоряющего промежутка. Поэтому основным режимом работы рассматриваемого эмиттера является режим электронного пучка, который реализуется при пониженном давлении газа в формирователе р~10-2 Па и потенциалах формирователя 5, превышающих потенциал плазмы в отверстии связи. В этом режиме электроны проникающей плазмы, ускоренные электрическим полем в сторону формирователя 5 и эмиссионного электрода 7, создают внутри формирователя 5 эмитирующую плазму. При подаче ускоряющего напряжения вблизи эмиссионного электрода 7 формируется эмитирующая поверхность плазмы. Для улучшения равномерности распределения плотности тока по поверхности эмиттера на оси формирователя 5 размещается перераспределяющий элемент 6, представляющий собой тело вращения. Устройство нашло применение в микроэлектронике, машиностроении и других областях, где не требуются высокие электронные токи, однако предъявляются высокие требования к чистоте обрабатываемой поверхности и вследствие этого не допускается использование дуговых разрядов с эрозией и испарением электродов. Недостатком этого устройства является низкая энергетическая эффективность, связанная с ограниченным выходом заряженных частиц из отражательного разряда через отверстие связи малого диаметра, а также потерями электронов на формирователе 5. Другим недостатком является постепенное увеличение диаметра отверстия связи dk вследствие катодного распыления, что приводит к изменению технологических рабочих параметров известного устройства и требует периодической замены катодной вставки с отверстием связи.

Задачей изобретения является создание плазменного эмиттера электронов, в котором увеличена энергетическая эффективность, а технологические рабочие параметры устройства характеризуются высокой временной стабильностью.

Техническим результатом изобретения является увеличение энергетической эффективности за счет увеличения плотности тока эмиссии при одинаковой (по сравнению с прототипом) потребляемой мощности и времени непрерывной работы плазменного эмиттера электронов.

Указанный технический результат достигается тем, что в плазменном эмиттере электронов, содержащем осесимметричные детали: полый катод, цилиндрический анод с внутренним диаметром da, магнит, плоский катод с отверстием связи, формирователь в виде полого цилиндра, перераспределяющий элемент, эмиссионный электрод, находящийся под положительным относительно катодов потенциалом, согласно изобретению диаметр отверстия связи dk в плоском катоде увеличен, так что выполняется условие lk << dk ≤ da (где lk - длина катодного падения потенциала), а формирователь либо выполнен из диэлектрического материала, либо, если он выполнен из металла, электрически изолирован от остальных электродов.

Изобретение поясняется чертежами.

На фиг.2 представлена принципиальная схема предлагаемого плазменного эмиттера электронов: 1 - полый катод, 2 - цилиндрический анод, 3 - кольцевой магнит, 4 - плоский катод, 5 - формирователь, 6 - перераспределяющий элемент, 7 - эмиссионный электрод, 8 - блок питания.

На фиг.3 приведены зависимости тока I2 на формирователь 5 и эмиссионный электрод 7 от поданного на них напряжения U2 при давлении газа (воздуха) р=20 мПа, токе на анод 2 I1=200 мА и различных диаметрах отверстия связи dk:1) dk=3.5 мм (участок С-D соответствует режиму электронного пучка), 2) dk=7 мм.

Положительный эффект достигается за счет того, что, как показали исследования, работа эмиттера при низких давлениях газа (~2×10-2 Па) возможна не только в режиме электронного пучка (кривая 1 на фиг.3), но и в режиме объемного разряда (кривая 2 на фиг.3). Для зажигания и поддержания объемного разряда при низких давлениях газа необходимо увеличение диаметра отверстия связи dk. Объемный разряд замыкается на эмиссионный электрод 7 и формирователь 5, который в прототипе находится под анодным потенциалом. Для уменьшения потерь электронов на формирователе 5 в предлагаемом устройстве эта деталь изготовлена из диэлектрического материала. По этой же причине, если формирователь 5 выполнен из металла, он должен быть электрически изолирован от остальных электродов. Высокая плотность эмиссионного тока в предлагаемом устройстве достигается за счет того, что основной ток объемного разряда замыкается на эмиссионный электрод 7. Это объясняется влиянием сразу нескольких факторов: во-первых, эмиссионный электрод 7 имеет положительный анодный потенциал, во-вторых, эмиссионный электрод 7 находится на наибольшем расстоянии от катодов, а разряд низкого давления всегда стремится замыкаться на наиболее удаленный анод, в-третьих, ток на цилиндрический анод 2 ограничен балластным сопротивлением, в-четвертых, снижены потери тока на формирователь 5, так как он не является токопроводящим элементом. Чем больше диаметр отверстия связи dk, тем больше площадь его внутренней поверхности и тем соответственно меньше плотность тока ионов, распыляющих внутреннюю поверхность отверстия. Кроме того, дальнейшее незначительное увеличение dk не влияет на изменение рабочих параметров столь же существенно как в прототипе. Таким образом, увеличение dk по сравнению с прототипом обеспечивает зажигание объемного разряда низкого давления и повышение времени непрерывной работы устройства. Однако увеличение dk имеет предел. При dk > da (где da - диаметр цилиндрического анода 2) нарушаются условия горения отражательного разряда из-за ослабления в нем магнитного поля, уменьшения давления газа и уменьшения количества отраженных электронов.

Плазменный эмиттер электронов работает следующим образом.

При подаче газа в полый катод 1 и напряжения на электроды от блока питания 8 между катодами 1 и 4 и анодом 2 зажигается открытый отражательный разряд. Разряд является открытым, так как диаметр отверстия связи dk по сравнению с аналогичным параметром в прототипе увеличен, так что удовлетворяется условие dk >> 1k (Источники заряженных частиц с плазменным эмиттером. Екатеринбург. УИФ "Наука". 1993. ред. П.М.Щанин. с.107-112). Плазма открытого разряда проникает в формирователь 5, в результате чего зажигается объемный разряд, анодом которого является эмиссионный электрод 7, на который приходится основная доля тока, что обуславливает высокую плотность тока эмиссии. Перераспределяющий элемент 6, как и в прототипе, служит для достижения равномерного распределения плотности тока эмиссии. Эмиссионный электрод закрепляется снаружи формирователя 5 во избежание нежелательных эффектов, связанных с запылением внутренней поверхности формирователя проводящей пленкой и установлением электрического контакта эмиссионный электрод 7 - формирователь 5. Таким образом, предлагаемое устройство, в отличие от прототипа, работает в режиме объемного разряда, причем эмиссионный электрод является основным анодом разряда, что позволяет получить высокую плотность эмиссионного тока при низкой потребляемой мощности и низком напряжении разряда (Up=300-400 В).

Плазменный эмиттер электронов, содержащий осесимметричные детали: полый катод, цилиндрический анод с внутренним диаметром da, магнит, плоский катод с отверстием связи, формирователь в виде полого цилиндра, перераспределяющий элемент, эмиссионный электрод, находящийся под положительным относительно катодов потенциалом, отличающийся тем, что диаметр отверстия связи dk в плоском катоде увеличен так что выполняется условие lk<<dk≤da (где lk - длина катодного падения потенциала), а формирователь либо выполнен из диэлектрического материала, либо, если он выполнен из металла, электрически изолирован от остальных электродов.



 

Похожие патенты:

Изобретение относится к отпаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для проведения неразрушающего элементного анализа вещества и проведения исследований нейтронно-радиационными методами, в т.ч.

Изобретение относится к ускорительным трубкам для получения нейтронов при проведении неразрушающего элементного анализа вещества и проведения физических исследований нейтронно-радиационными методами.

Изобретение относится к запаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для исследования геофизических и промысловых скважин. .

Изобретение относится к генераторам нейтронов и может быть использовано в нейтронном каротаже, в нейтронном активационном анализе, в лучевой терапии. .

Изобретение относится к области ядерной техники, в частности к нейтронным генераторам, и может быть использовано в ряде приложений, например в нейтронных трубках, для каротажных исследований.

Изобретение относится к устройствам импульсных излучателей-генераторов разовых или многоразовых импульсов нейтронного и рентгеновского излучения. .

Изобретение относится к генераторам разовых импульсов нейтронов и рентгеновского излучения и предназначено для проведения ядерно-физических исследований, изучения радиационной стойкости и генерирования нейтронных пучков.

Изобретение относится к устройствам для генерирования нейтронных пучков, в частности к генераторам разовых импульсов нейтронного и рентгеновского излучения. .

Изобретение относится к ядерной физике и медицине и может быть применено в источниках нейтронов, выполненных на основе ускорителей заряженных частиц. .

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов, в частности к малогабаритным отпаянным ускорительным трубкам, и может быть использовано в ускорительной технике или в геофизическом приборостроении, например, в импульсных генераторах нейтронов народно-хозяйственного назначения, предназначенных для исследования скважин методами импульсного нейтронного каротажа.

Изобретение относится к области генерации потоков атомов водорода с тепловыми скоростями для возможности облучения изделий равномерным по плотности потоком с целью исследования параметров, закономерностей и механизмов взаимодействия атомов водорода с материалами, а также для решения прикладных задач, в частности, определения скорости и характера наводороживания материалов при облучении потоком атомов водорода с тепловыми скоростями

Изобретение относится к средствам контроля движения гранулированных твердых тел по тракту пневмотранспортирования

Изобретение относится к области квантовой электроники и может быть использовано в атомно-лучевых стандартах частоты на пучках атомов рубидия или цезия

Изобретение относится к области плазменной техники. Способ генерирования импульсного потока высокоэнергичных частиц, содержащий следующие этапы: инициирование ионной плазмы на первом электроде (111) в вакуумной камере (110) и обеспечение возможности развития указанной плазмы по направлению ко второму электроду (112) в указанной вакуумной камере, подача короткого импульса высокого напряжения между указанными электродами в промежутке времени, при котором указанная ионная плазма находится в переходном состоянии с пространственным распределением ионов или электронов на расстоянии от указанного второго электрода, с целью ускорения указанных распределенных ионов или электронов по направлению к указанному второму электроду, благодаря чему генерируется высокоэнергетический поток заряженных частиц, в то же время преодолевается предел тока, связанный с пространственным зарядом, обычного вакуумного диода и генерирование указанных частиц высокой энергии на указанном втором электроде (112). Технический результат - повышение плотности тока в течение ультракороткого импульса. 2 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к генератору нейтронов и способу его конструирования. Генератор включает в себя решетку, выполненную с возможностью выработки ионизируемого газа при нагреве электронами, сталкивающимися с ней. Катод испускает электроны для нагрева решетки и столкновений с выработанными атомами ионизируемого газа для образования ионов. Нейтроны образуются от столкновения ионов, падающих на мишень в генераторе. Инструмент для подземного использования, включающий в свой состав генератор нейтронов. Техническим результатом является обеспечение возможности работы с различными типами источников и при различных условиях. 1 н. и 24 з.п. ф-лы, 5 ил.

Изобретение относится к области ускорительной техники и может быть использовано для решения прикладных задач, в частности для удаления космического мусора и в военном деле. Ускорение магнитных диполей в данном способе осуществляют бегущим градиентом магнитного поля, образующегося при последовательном включении токовых витков. Магнитные диполи, содержащие внутри себя сверхпроводящую кольцевую обмотку с током, имеющие коническую головную часть, предварительно ускоряют газодинамическим способом. Внутри магнитных диполей помещают сверхпроводящую Nb3Sn обмотку и возбуждают в ней кольцевой ток. Разворот диполей на 180 градусов в поле ускоряющего импульса и фокусировку диполей осуществляют тем, что магнитные диполи ускоряют внутри титановой трубки. Магнитные диполи выпускают в атмосферу через три буферные полости, каждая из которых имеет свою индивидуальную откачку. В головной части магнитного диполя делают асимметричный скос, создающий подъемную силу. Техническим результатом является увеличение конечной скорости магнитных диполей. 1 ил., 2 табл.

Изобретение относится к ускорительной технике. Способ включает формирование сильноточного трубчатого пучка вращающихся электронов в стационарном магнитном поле, захват электронов в магнитную ловушку, заполнение электронного сгустка ионами за счет ионизации газа в вакуумной камере ускорителя или из предварительно подготовленного плазменного сгустка. В заявленном способе ступенчато и синхронно с движением ионов смещают внешнюю эффективную потенциальную яму магнитной ловушки и обеспечивают смещение и удержание электронов в направлении ускорения. Величину смещения центра ямы выбирают на каждом шаге так, чтобы ионы попадали в область ускорения собственным электрическим полем электронного сгустка. Техническим результатом является возможность избежать разрыва электронной и ионной компонент сгустков и срыва ускорения ионов на большой длине, а также развития многочисленных неустойчивостей, возможность получить большую цикличность работы и компактность ускорителя, а также возможность ускорения большого количества ионов в цикле (~ 5-10) при короткой длительности импульса и возможность ускорения ионов на большой длине. 4 ил.

Изобретение относится к генераторам нейтронов и может быть использовано для нейтронного анализа веществ, материалов и изделий, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Технический результат - повышение надежности и уменьшение габаритов генератора нейтронов. В генераторе нейтронов в объеме заземленного корпуса размещен изолированный и проходящий через объем контейнера проводящий стержень, концы которого электрически соединены с корпусом, две тороидальные обмотки на кольцевых сердечниках, охватывающих проводящий стержень, одна из которых расположена у проводящего заземленного корпуса и подключена к выходу заземленного источника переменного напряжения, а вторая размещена в проводящем контейнере и подключена к входу блока питания. 1 ил.

Изобретение относится к устройствам для получения нейтронов и может быть использовано для нейтронного анализа для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Техническим результатом изобретения является увеличение эффективности источника ионов запаянной нейтронной трубки и увеличение потока нейтронов. Технический результат достигается тем, что в запаянной нейтронной трубке между корпусом источника ионов и анодом параллельно оси трубки установлен трубчатый изолятор, по всей длине, кроме концов, покрытый проводящим слоем, электрически соединенным с катодом, а внутри трубчатого изолятора расположен проволочный проводник, соединенный с вытягивающим электродом и выводом проходного изолятора. 1 ил.
Наверх