Светодиодный фитооблучатель

Светодиодный фитооблучатель содержит платы со световыми элементами, состоящими из групп светодиодов с различными спектрами излучения, вентилятор и систему управления с коммутатором групп светодиодов, датчиком освещенности и датчиком-спектрометром. Платы выполнены из гибкого материала в виде полуцилиндров, соединены попарно навесами и установлены в цилиндрический плафон. Светодиоды расположены с наружной стороны плат в несколько рядов. Система управления вынесена за пределы корпуса и выполнена на базе промышленного компьютера, управляющего фитооблучателем по программе. При таком выполнении снижается материалоемкость устройства и упрощается система управления, повышается эффективность использования световой энергии устройства культивируемыми растениями, улучшаются условия для процесса фотосинтеза и, как следствие, повышается урожайность растений защищенного грунта, сокращаются сроки выращивания растительной продукции. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к сельскохозяйственной технике, а именно к осветителям, предназначенным для выращивания различной растительной продукции, зелени, овощей или цветов в сооружениях защищенного грунта.

Известно устройство для освещения растений, которое представляет собой металлогалогенную лампу (МГЛ), в колбу которой вводят добавки галогенидов и ряда других элементов, например алюминия, кремния и др., в результате чего получают световой поток из трех спектров - сине-голубого (С) в диапазоне 400-500 нм, красного (К) в диапазоне 600-700 нм и желто-зеленого (З) в диапазоне 500-600 нм, в соотношениях: С/К/З (20%±5%)/(40%±5%)/(40%±5%). При этом колба лампы наполняется инертными газами с достаточно высоким давлением [патент РФ №2040828, МПК A01G 9/26, «Установка для облучения растений», опубл. 27.07.1995 г., бюл. №21].

Недостатки известного устройства для освещения растений заключаются в следующем:

1) световой диапазон фитопрожектора, выполненного в виде МГЛ, состоит из трех широкополосных спектров и не является оптимальным по фотосинтетической активности растений (ФАР), поэтому осветитель потребляет излишнюю энергию для генерации светового потока;

2) в процессе работы МГЛ спектральный состав их непредсказуемо изменяется, что ухудшает условия роста растений;

3) изменять спектральный состав излучения с помощью известной лампы невозможно, а, как показывает практика растениеводства, при выращивании различных видов растений спектральный состав освещения желательно изменять по мере их роста и созревания;

4) МГЛ имеет высокую температуру корпуса и при определенных условиях может обжечь растения или повысить температуру теплицы до недопустимого уровня;

5) МГЛ лампа взрывоопасна и может разлететься на осколки при случайном попадании на нее брызг, возникающих в процессе полива растений;

6) для включения лампы требуется специальная пускорегулирующая аппаратура (ПРА), состоящая из зажигающего устройства и балластного сопротивления, в которых теряется часть электроэнергии;

7) срок службы лампы не превышает 5000 тыс. часов, что увеличивает эксплуатационные расходы на освещение.

Известно также устройство искусственного освещения растений в зависимости от интенсивности и спектрального состава внешней освещенности в соответствии с заданным режимом облучения [патент РФ №2278408, МПК G05D 25/00, «Универсальный полихроматический облучатель», опубл. 20.06.2006 г., бюл. №17]. Облучатель содержит несколько групп светодиодов с различным спектром излучения, дополняющих друг друга, включая инфракрасный и ультрафиолетовый, а обогреватель выполнен в виде источника инфракрасного излучения с направленным тепловым потоком. В систему управления введены автоматический регулятор цикла облучения по времени суток любого пояса земного шара, автоматический регулятор режима освещения в соответствии с погодными условиями, например «солнце», «пасмурно» и т.д. В нем предусмотрен датчик сканирования спектрального состава оптического диапазона облучения и корректирования на основе обратной связи результирующего спектрального состава путем подключения соответствующих групп светодиодов.

Недостатки устройства известного облучателя заключается в том, что:

1) его корпус имеет сложную конструкцию и при воздействии влаги, попадающей на корпус, например, сверху, прожектор может выйти из строя;

2) часть света теряется из-за того, что сам корпус облучателя препятствует прохождению светового потока, идущего к освещаемому объекту от внешнего источника освещения;

3) при облучении не учитываются этапы онтогенеза растений, а также не предусмотрена возможность импульсного включения фитопрожектора с регулировкой времени экспозиции и длительности темновых пауз.

Известно также устройство светодиодного фитопрожектора [патент РФ №2369086, МПК A01G 9/20, «Светодиодный фитопрожектор», опубл. 10.10.2009 г., бюл. №28], выбранное за прототип, в котором светодиодный фитопрожектор содержит корпус со световыми элементами, состоящими из групп светодиодов с различными спектрами излучения, блок электрического питания, микропроцессорную систему управления с коммутатором групп светодиодов, датчик освещенности, датчик-спектрометр, воздействующий на группы светодиодов через блок управления и позволяющий корректировать спектральный состав источника света в зависимости от внешнего освещения и с учетом вида растений. Корпус фитопрожектора выполнен в виде прямоугольной рамы, изготовленной из П-образного швеллера, светодиоды расположены на платах, платы установлены в один ряд в прозрачных герметичных плафонах (в вариантах технического решения плафоны выполнены в виде трубок, фасонного профиля, прямоугольного фасонного профиля, прямоугольного фасонного профиля со скругленной лицевой частью плафона), плафоны установлены внутри корпуса с зазором относительно друг друга в несколько параллельных рядов. В варианте технического решения в блок управления светодиодным прожектором введен программируемый контроллер с операционными стеками протоколов, формирующий определенный режим управления светодиодами в соответствии с ФАР и набором обозначений, указывающий вид растения и этап его онтогенеза. В варианте технического решения в схему управления введен программируемый контроллер, обеспечивающий заданный режим импульсного включения источников света, с регулятором времени экспозиции и регулятором длительности темновых пауз. В варианте технического решения прямоугольная рама снабжена верхней крышкой с вентилятором.

Светодиоды разделены на группы, различающиеся спектром излучения. Спектр излучения светодиодов подобран таким образом, чтобы его состав соответствовал потребностям растений того или иного вида для обеспечения оптимального фотосинтеза. Соотношение световых потоков подбирается заранее и затем может регулироваться в широких пределах. Это соотношение регулируется в соответствии с видом и стадией развития растения. Светодиоды различного спектра излучения распределены вдоль лицевой поверхности фитопрожектора равномерно. При этом группы светодиодов определенного спектра излучения располагают преимущественно в одном из плафонов, а плафоны чередуют. Часть светодиодов может иметь ультрафиолетовый и инфракрасный спектры излучения.

В систему управления входит блок электропитания и микропроцессорная система управления, в которую встроен компьютерный блок задания режима включения (БЗРВ). К БЗРВ в свою очередь подключены программируемый контроллер для перевода схемы из ручного режима в автоматический, датчик внешней освещенности, спектрометр, таймер, а также программируемый контроллер вида растений. Кроме того, в систему управления введен программируемый контроллер задания режимов для поддержания суточного цикла изменения спектра освещения и величины освещенности в соответствии с выбранной программой. Также в схему может быть введен программируемый контроллер, который позволяет учесть тип внешнего источника света. В варианте технического решения в схему управления введен программируемый контроллер, обеспечивающий заданный режим импульсного включения световых элементов с регулятором, управляющим продолжительностью световых импульсов, с регулятором освещенности и регулятором длительности темновых пауз.

Недостатками выбранного за прототип облучателя являются:

1) конструкция фитопрожектора предполагает его закрепление на несущих конструкциях теплицы, поэтому фитопрожектор размещен над растениями на значительной высоте и верхний ярус листьев может препятствовать поступлению света к нижним ярусам листьев;

2) наличие металлического корпуса повышает его металлоемкость;

3) в каждый облучатель встроена очень сложная система управления, включающая в себя несколько программируемых контроллеров, что значительно удорожает облучатель.

Целью данного изобретения является повышение эффективности использования световой энергии облучательной установки культивируемыми растениями, обеспечение лучших условий для процесса фотосинтеза и, как следствие, увеличение урожайности растений защищенного грунта, сокращение сроков выращивания растительной продукции, повышение ее питательных и вкусовых качеств, улучшение товарного вида, а также снижение материалоемкости устройства и упрощение системы управления.

Указанная цель достигается за счет того, что в фитооблучателе, содержащем платы со световыми элементами, состоящими из групп светодиодов с различными спектрами излучения, снабженном вентилятором и системой управления с коммутатором групп светодиодов, датчиком освещенности и датчиком-спектрометром, в отличие от прототипа, платы выполнены из гибкого материала в виде полуцилиндров, соединены попарно навесами и установлены в прозрачный цилиндрический плафон, светодиоды расположены с наружной стороны плат в несколько рядов, кроме того, фитооблучатель подвешен на тросе и регулируется по высоте с помощью электропривода, а система управления вынесена за пределы корпуса и выполнена на базе промышленного компьютера, управляющего фитооблучателем по программе.

Такая конструкция фитооблучателя позволяет опустить его внутрь посадок. В результате этого растения не тянутся к свету, так как все ярусы листьев растений освещаются равномерно, следовательно, световой поток используется более рационально всеми листьями растения. Кроме того, при такой организации досвечивания возможно применять загущенный способ посадки, при котором на каждый квадратный метр площади высаживается до 8-10 растений, в то время как при традиционном - всего 3-4. Соединение плат между собой навесами позволяет в случае необходимости открывать их, что облегчает процесс монтажа и ремонта. Подвешивание облучателя на тросе и применение электропривода позволяют регулировать высоту подвеса облучателя. Кроме того, такая конструкция фитооблучателя отличается меньшей металлоемкостью, так как отсутствует металлический корпус, а также меньшей стоимостью, так как система управления вынесена за пределы корпуса облучателя, что позволяет объединять в одну систему несколько облучателей.

Совокупность признаков заявляемого фитооблучателя не известна и не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии технического решения критериям «новизна» и «изобретательский уровень».

Сущность изобретения состоит в следующем. Светодиодный фитооблучатель, представленный на фиг.1, содержит платы 1 со световыми элементами 2, состоящими из групп светодиодов с разными спектрами излучения. Платы выполнены из гибкого материала в виде полуцилиндров и соединены попарно навесами 3, позволяющими в случае необходимости открывать их, что облегчает процесс монтажа и ремонта. Выводные провода расположены с внутренней стороны плат. Светодиоды расположены с наружной стороны плат в несколько рядов. Количество светодиодов в ряду, количество рядов на платах, а также количество попарно соединенных плат зависят от мощности светодиодов, требуемой суммарной величины светового потока и спектра их излучения. Платы установлены в прозрачный цилиндрический плафон 4, выполненный, например, из акрила. К верхней части плафона прикреплен вентилятор 5, направляющий воздушный поток внутрь плафона вдоль плат, что обеспечивает необходимое охлаждение. Облучатель подвешен на тросе 6. Применение электропривода 7 позволяет поднимать или опускать облучатель на необходимую высоту.

Светодиоды 2 разделены на группы, различающиеся спектром излучения. Спектр излучения светодиодов подобран таким образом, чтобы его состав соответствовал потребностям растений того или иного вида для обеспечения оптимального фотосинтеза, и может регулироваться в широких пределах. Светодиоды различного спектра излучения распределены вдоль лицевой поверхности фитооблучателя равномерно. Часть светодиодов также может иметь ультрафиолетовый и инфракрасный спектры излучения.

Система управления (фиг.2) вынесена за пределы корпуса фитооблучателя, что позволяет объединять в одну систему десятки облучателей, и включает в себя компьютерный задатчик, выполненный на базе промышленного компьютера.

Светодиодный фитооблучатель подвешивают на тросе и опускают внутрь посадок таким образом, чтобы все ярусы листьев растений освещались равномерно. Светодиодный фитооблучатель работает следующим образом: компьютерный задатчик (8) по программе на основе данных, полученных от датчика внешней освещенности (11) и датчика-спектрометра (12), формирует управляющий сигнал и через коммутатор групп светодиодов (9) воздействует на группы светодиодов (2) и позволяет корректировать интенсивность и спектральный состав источника света в зависимости от внешнего освещения и с учетом вида растений. Интенсивностью светового потока можно управлять при помощи включения и выключения необходимого количества плат со световыми элементами, а спектральным составом - включением групп светодиодов с разными спектрами излучения.

Кроме того, в компьютерный задатчик введена информация, позволяющая формировать определенный режим управления светодиодами в соответствии с значениями фотосинтетически активной радиации (ФАР) и с данными о растениях и этапах их онтогенеза.

При необходимости компьютерный задатчик позволяет реализовать режим импульсного включения источников света с управлением временем экспозиции и длительностью темновых пауз. Применение режима импульсного включения источников света позволяет снизить удельное энергопотребление.

Применение данного фитооблучателя значительно повышает эффективность использования световой энергии облучательной установки культивируемыми растениями, а значит, позволяет сократить длительность периода вегетации до начала плодоношения, увеличить продуктивность самих растений, а также повысить товарные качества плодов и содержание в них сахаров и витаминов.

Кроме того, изобретение обладает меньшей металлоемкостью, а также позволяет значительно сократить затраты на оснащение облучателями промышленных теплиц, потому что система управления вынесена за пределы корпуса фитооблучателя и выполнена на базе современного промышленного компьютера, что позволяет объединять в одну систему десятки и даже сотни облучателей.

1. Светодиодный фитооблучатель, содержащий платы со световыми элементами, состоящими из групп светодиодов с различными спектрами излучения, вентилятор и систему управления с коммутатором групп светодиодов, датчиком освещенности и датчиком-спектрометром, отличающийся тем, что платы выполнены из гибкого материала в виде полуцилиндров, соединены попарно навесами и установлены в цилиндрический плафон, светодиоды расположены с наружной стороны плат в несколько рядов, а система управления вынесена за пределы корпуса и выполнена на базе промышленного компьютера, управляющего фитооблучателем по программе.

2. Светодиодный фитооблучатель по п.1 подвешен на тросе и регулируется по высоте с помощью электропривода.



 

Похожие патенты:

Изобретение относится к области сельского хозяйства. .

Изобретение относится к области сельского хозяйства. .
Изобретение относится к области светотехники и может быть использовано для выращивания сельскохозяйственной продукции при искусственном освещении. .

Изобретение относится к области сельскохозяйственных культивационных сооружений защищенного грунта и может быть использовано при строительстве теплиц и дачных парников, предназначенных для выращивания различных сельскохозяйственных культур в условиях искусственного микроклимата под светопроницаемым пленочным покрытием.

Изобретение относится к сельскому хозяйству, в частности к осветителям, предназначенным для выращивания рассады, овощей или цветов в домашних или промышленных условиях, и может быть использовано в других областях народного хозяйства, где требуется индивидуальная подсветка, например для разведения различных существ.
Изобретение относится к пленочным материалам, которые применяются в качестве укрывных материалов в растениеводстве при выращивании растений в защищенном фунте. .

Изобретение относится к разведению цитрусовых и трудноукореняемых тропических и субтропических растений в комнатных условиях. .

Изобретение относится к сельскому хозяйству и может быть использовано при выращивании овощных и ягодных культур, преимущественно земляники, как на равнинных участках, так и на склонах до 45o.
Изобретение относится к области сельского хозяйства, в частности к выращиванию растений в закрытом грунте. Способ включает высадку растений и их выращивание с периодическим освещением растений. При этом освещение проводят оптическим излучением, сфокусированным с использованием оптической системы, включающей источник оптической энергии и отражатель, расположенные вне закрытого пространства с возможностью передачи, по меньшей мере, одного пучка оптической энергии в закрытое помещение на установленный в закрытом помещении, по меньшей мере, один вращающийся отражатель, установленный с возможностью передачи оптической энергии на растения. Причем используют время освещения одного растения в течение 0,5-1,0 сек при интервале между освещением 9-15 сек. Способ позволяет повысить эффективность светоимпульсной обработки растений и упростить выращивание растений в закрытом пространстве. 9 з.п. ф-лы.

Изобретение относится к сельскому хозяйству, в частности к осветителям, предназначенным для выращивания рассады, овощей или цветов в домашних или промышленных условиях, и может быть использовано в других областях народного хозяйства, где требуется индивидуальная подсветка, например, для разведения различных существ. Светильник содержит излучатель с отражателем. Светильник снабжен поляризатором, расположенным на его оптическом выходе или на пути светового потока излучателя. Поляризатор выполнен, например, в виде диэлектрической решетки или пленочным, нанесенным, например, на отражающую поверхность отражателя излучателя. Поляризирующий диэлектрик поляризатора имеет границы раздела сред, например, воздух-стекло. Поверхности поляризации на границах раздела сред диэлектриков расположены под углом к падающим лучам излучателя и определяются зоной угла Брюстера. При таком выполнении упрощается конструкция устройства, повышается КПД фотосинтетически активной радиации излучения, что приводит к повышению вегетации и сокращению сроков развития растений, экономии электроэнергии, сокращению стоимости устройства. 2 з.п.ф-лы, 7 ил.

Парник содержит каркас, изготовленный из профилированных металлических элементов, соединенных между собой винтовыми крепежными элементами, который включает стойки, горизонтальные продольные прогоны, связанные между собой и со стойками наклонные и горизонтальные ригели перекрытия в виде закрепленных на стойках стропильных треугольных ферм. Верхняя часть ферм выполнена с надстройкой в виде арочного перекрытия, несущего кровлю из светопроницаемой пленки и образующего по краям продольные ниши для размещения в них рулонов регулируемого по площади кровли светопроницаемого пленочного покрытия. Несущие светопроницаемую пленку рулоны смонтированы с возможностью сматывания и разматывания пленки по перекрытию парника с ячеистого вида проемами с помощью механизма, выполненного с гибкими тяговыми стропами. Стропы соединены с элементами конструкции рулонов, запасованы через блоки, смонтированные на элементах каркаса парника, и несут на свободных концах рукоятки-противовесы. Стропы запасованы каждый одним витком на строповедущем барабане. Барабаны установлены на цапфах рулонов. Свободный край пленки взаимодействует со смонтированным на каркасе парника натяжным грузовым узлом. Часть рулонов, которыми снабжен парник, выполнена с запасом намотки пленки, двукратно превышающим регулируемую рулоном площадь кровли. При этом на внутренней половине намотки на пленке закреплена отражающая солнечные лучи алюминиевая фольга. Свободный край наружной светопроницаемой половины намотки запасован через отклоняющий вал, смонтированный на боковой стенке парника, и несет удлиненный груз натяжения пленки. При таком выполнении обеспечивается расширение технических возможностей парника при различных, резко изменяющихся в течение сезона климатических условий местности, где расположен парник. 2 з.п. ф-лы, 13 ил.

Изобретение относится к средствам освещения растений при выращивании в защищенной среде. Устройство содержит: компьютер (1) с интерфейсом (2), управляющее устройство (3), блок (4) энегроснабжения, по меньшей мере, одну лампу (7), вентилятор (5) для охлаждения светодиодных элементов и подачи CO2 или азота (N) из резервуара (6), присоединенного через соответствующую магистраль (8). Причем лампа (7) состоит из стойки (17) с трубчатым соединением (29) и подставки (15) с прикрепленным к ней плафоном (14), в центре верхней поверхности (21) которого имеется отверстие (22). На боковых поверхностях симметрично расположены светодиодные элементы (13) со светодиодами (12) и теплообменниками, светодиодный драйвер (27), вентиляционные отверстия (19) и соединительная панель (25). При этом управляющее устройство (3) состоит из: модуля (9) для создания базовой последовательности прямоугольных импульсов с предварительно заданной частотой и регулирования их продолжительности, то есть соотношения сигнал/пауза; модуля (10) для определения числа импульсов, соответствующих отдельным цветам, и их положения в промежутки времени Tfs и Tfp для фотосинтетического и фитопрофилактического спектров, а также базовой частоты fo излучения; и модуля (11) для ручного выбора режима и ввода данных. Изобретение обеспечивает улучшение роста и урожайности растений путем обеспечения дополнительного освещения с его регулированием в теплицах. 6 з.п. ф-лы, 16 ил.

Изобретение относится к области сельского хозяйства, в частности к осветителям, предназначенным для выращивания рассады, овощей, цветов в домашних или промышленных условиях. Достигаемый технический результат - повышение КПД фотосинтетической активной радиации излучения, снижение потребления электроэнергии, повышение вегетации растений. Светильник содержит излучатель (1) с отражателем (3) и двухзвенный поляризатор. Двухзвенный поляризатор образован поляризирующими диэлектриками, первый из которых расположен на внутренней поверхности отражателя, второй - на поверхности диэлектрического сердечника (6), расположенного симметрично оптической оси отражателя. Поляризирующие диэлектрики пленочные, однослойные или многослойные. Двухзвенный поляризатор может быть снабжен механизмом подстройки диэлектрического сердечника, электростатическим или магнитостатическим. Магнитостатический узел может быть выполнен на постоянных магнитах или электромагнитах. 4 ил.

Изобретение относится к устройствам преобразования солнечной энергии в тепловую, в частности к системам солнечного теплоснабжения, размещенным на строительных конструкциях зданий и сооружений, и предназначенным для обогрева и (или) горячего водоснабжения индивидуальных жилых домов, коттеджей, сельских усадебных домов, офисов, общественных зданий, теплиц и других объектов. Система солнечного теплоснабжения состоит из опорной конструкции, на которой размещены солнечные коллекторы, соединенные входными и выходными патрубками с баком-аккумулятором, при этом в качестве опорной конструкции использованы дугообразные трубы, пристроенные к арочной теплице и выполненные с конструкцией теплицы заодно, изготовленные с отверстиями одного диаметра, выполненными с равным шагом, при этом коаксиально на каждую дугообразную трубу установлена с небольшим зазором дугообразная труба большего диаметра и меньшей длины, с отверстиями того же диаметра, что и на внутренней трубе и с тем же шагом, с возможностью перемещения наружной трубы относительно внутренней и фиксацией ее положения путем жесткого соединения труб через совпавшие отверстия, причем верхние и нижние концы наружных труб соединены горизонтально между собой стержнями, образуя раму для размещения каждого солнечного коллектора, при этом в баке-аккумуляторе установлен теплообменник, который соединен с солнечными коллекторами, а к баку-аккумулятору подсоединен приемник тепловой энергии. Технический результат - простота конструкции для установки солнечных коллекторов системы солнечного теплоснабжения. 6 з.п. ф-лы, 4 ил.

Изобретение относится к световым приборам, а именно к светильникам с определенным спектром излучаемого света, используемым для досветки растений, которым не хватает солнечного света, к так называемым фитосветильникам. Светодиодный фитосветильник состоит из корпуса 1, на верхней поверхности которого размещена солнечная батарея 2, а на нижней поверхности размещен отражатель 3, в котором размещен как минимум один светодиод, который через выключатель соединен с аккумуляторной батареей 6, расположенной внутри корпуса, и солнечной батареей 2. Соединение солнечной батареи 2 с аккумуляторной батареей 6 выполнено через диод. Корпус по своей длине условно разделен на две неравные части, на большей части которого, на его верхней поверхности размещена как минимум одна солнечная батарея, а на нижней поверхности размещен отражатель, в котором размещен как минимум один синий светодиод с длиной волны излучения 400-500 нм и один красный светодиод с длиной волны излучения 600-700 нм. Аккумуляторная батарея 6 размещена внутри корпуса 1 в меньшей по его длине части, перпендикулярно его длине и вдоль его боковой стенки. В корпусе снизу выполнено отверстие 7 или втулка, расположенное(ая) в пространстве между аккумуляторной батареей и отражателем, посредством которой корпус можно одевать сверху на держатель 8, выполненный в виде вертикального стержня, нижний конец которого приспособлен для втыкания в грунт. Такое выполнение обеспечивает удобство установки, позиционирования и эксплуатации устройства, возможность более удобной его зарядки, а также снижение стоимости. 2 з.п. ф-лы, 2 ил.

Парник // 2612635
Изобретение относится к области сельского хозяйства и может быть использовано в любых климатических поясах как укрытие для сельскохозяйственных культур с длинным вегетационным периодом в зонах рискованного земледелия, для продления сроков выращивания и вызревания, начиная с ранней весны и до глубокой осени. Парник содержит сборно-разборный каркас с покрытием, выполненный из секций, образованных из арок с распорками. Арка выполнена составной из стоек в виде трубы, и, не менее одной, дуги, в виде трубы арочной. Покрытие выполнено в виде чехла из полотнищ светорассеивающего и пропускающего воздух укрывного материала, снабженного рукавами, и карманами. Между каждой парой, вставленных в рукава чехла, арок, враспор, концами внутрь карманов, расположенных на внешней стороне полотнищ, перпендикулярно, с двух сторон, впритык к рукавам, поверх чехла вложены распорные соединители. Растяжки, прикрепляемые к земле, расположены по всему периметру парника, по одной от каждой стойки, вставленной в рукав, к которому, внутри чехла прикреплены формирующие арку, уравновешивающие усилия растяжек, поперечные стяжки. С каждого торца парника к каждой стойке торцевой арки прикреплены дополнительно по одной, регулирующей арочную форму крайней секции парника, растяжке, соединенной с колышком, прикрепленным к земле напротив торца, ближе к центральной продольной оси парника. При таком выполнении повышается ветроустойчивости парника с большой парусностью за счет сочетания в парнике элементов разной плотности, жесткости и гибкости. 4 ил.

Изобретение относится к сельскому хозяйству, в частности к производству овощей в защищенном грунте, в теплицах с автоматической системой управления факторами среды, путем локального досвечивания растений на фоне общего освещения. Техническим результатом является повышение равномерности и эффективности распределения световой энергии. Устройство для межрядкового досвечивания тепличных растений в защищенном грунте включает основные источники искусственного света 4, расположенные на уровне верхнего яруса 1 листьев, и дополнительные источники искусственного света, установленные на регулируемых по высоте подвесах на уровне среднего и нижнего ярусов. Технический результат достигается за счет того, что дополнительные источники искусственного света выполнены в виде отражателей, состоящих из каскадов шарнирно соединенных между собой зеркал 6 с вогнутой поверхностью, расположенных параллельно относительно друг другу в вертикальной плоскости и повернутых друг к другу тыльной стороной зеркал, при этом между каскадами зеркал расположено устройство управления 9 положением зеркал в вертикальной плоскости, которое выполнено в виде подвижных регулируемых по длине штанг 10, соединенных между собой шарнирами 8, причем длина предыдущих зеркал относительно длины последующих зеркал взята в соотношении 1:2. 2 ил.
Наверх