Способ получения пеноалюминия


 


Владельцы патента RU 2455378:

Государственное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" (RU)

Изобретение относится к порошковой металлургии, в частности к получению пеноалюминия. Приготавливают алюминиевый расплав и перегревают его выше температуры ликвидус. Полость формы под изделия из пеноалюминия заполняют водорастворимыми гранулами из смеси соды и желатина в соотношении: сода 95-99,5%, желатин 0,5-5%, и нагревают ее до температуры расплава. Алюминиевый расплав заливают в форму, при этом расплав заполняет полости между гранулами. После затвердевания алюминиевого расплава изделие извлекают из формы и помещают в воду, при этом гранулы растворяются в воде, образуя поры. Способ позволяет получить изделия из пеноалюминия со стабильной пористостью и с регулируемым размером пор.

 

Изобретение относится к металлургии, в частности к получению изделий и полуфабрикатов из пеноалюминия.

Известен способ получения пеноалюминия (патент РФ №2026394 от 1995.01.09. «Способ получения вспененного алюминия»), при котором приготавливают алюминиевый расплав и поток сжатой дисперсной смеси расплава металла с газом подают под уровень расплава под давлением, превышающим сумму атмосферного и металлостатического давлений, вытесняют область расплава, прилегающую к месту подачи диспергированной смеси, а часть этой смеси непрерывно отводят и охлаждают до затвердевания. Недостатком данного способа является неоднородность пор получаемого пеноалюминия и высокая себестоимость.

Известен также способ получения пеноалюминия, который принят за прототип (патент РФ №2400552 от 27.09.2010. «Способ получения пеноалюминия»), при котором алюминиевый расплав заливают в нагретую до той же температуры форму, заполненную гранулами из водорастворимых солей, химически не взаимодействующих с алюминиевым расплавом, с температурой плавления выше температуры нагрева расплава и формы и с плотностью выше плотности алюминиевого расплава. В качестве солей используют или хлорид кальций, или хлорид бария, или фторид калия. После затвердевания для растворения гранул соли изделие извлекают из формы и помещают в воду. Недостатком данного способа является использование для изготовления гранул гигроскопичных хлористых или фтористых солей, при этом гранулы при хранении теряют прочность, что приводит к их разрушению при заливке.

Технический результат предлагаемого способа заключается в повышении качества изделий, изготавливаемых из пеноалюминия.

Сущность предлагаемого способа заключается в том, что перегретый выше линии ликвидус алюминиевый расплав заливают в нагретую до той же температуры форму, заполненную водорастворимыми гранулами.

В отличие от прототипа водорастворимые гранулы изготавливают из смеси соды и желатина в соотношении:

сода 95-99,5%
желатин 0,5-5%

Такая совокупность новых признаков с известными позволяет по сравнению с прототипом понизить гигроскопичность гранул, повысить их прочность и снизить вероятность их разрушения при заливке, что повысит качество получаемых изделий из пеноалюминия.

Приготавливают алюминиевый расплав и перегревают его выше температуры ликвидус. Полость формы под изделия из пеноалюминия заполняют гранулами из смеси соды (95-99,5%) и желатина (0,5-5%) и нагревают ее до температуры расплава.

Алюминиевый расплав заливают в форму, при этом расплав заполняет полости между гранулами. После затвердевания алюминиевого расплава изделие извлекают из формы и помещают в воду. Гранулы растворяются в воде, образуя однородные поры.

Высокая температура плавления соды (854°С) обеспечивает термическую стабильность гранулам при заливке, а более высокая плотность, чем плотность алюминия, не позволяет всплывать гранулам. Желатин выполняет функцию связующего и в указанных пределах обеспечивает получение гранул с высокой прочностью. Высокая прочность гранул и негигроскопичность снижают вероятность разрушения гранул при заливке и позволяют получать качественные изделия с равномерной и однородной пористостью.

Примером применения предлагаемого способа является изготовление пеноалюминиевых блоков. Расплав из алюминия нагревают до температуры 760°С. Засыпают гранулы из смеси соды 98% и желатина 2% размером 2 мм в металлическую форму и нагревают форму с гранулами до 760°С. В форму с гранулами заливают расплавленный алюминий и охлаждают до затвердевания.

После затвердевания блок извлекают из формы и помещают в воду для растворения гранул.

Предлагаемый способ обеспечивает технический эффект и может быть осуществлен с помощью известных в технике средств. Следовательно, он обладает промышленной применимостью.

Способ получения пеноалюминия, при котором перегретый выше линии ликвидуса алюминиевый расплав заливают в нагретую до той же температуры форму, заполненную водорастворимыми гранулами, отличающийся тем, что водорастворимые гранулы изготавливают из смеси соды и желатина в соотношении, %:

сода 95-99,5
желатин 0,5-5


 

Похожие патенты:
Изобретение относится к цветной металлургии и может быть применено при получении сплавов системы алюминий-свинец. .
Изобретение относится к литейному производству и может быть применено для получения алюминиево-свинцовых подшипников скольжения. .
Изобретение относится к алюминиевому сплаву, детали из которого получают литьем под давлением. .
Изобретение относится к получению высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, предназначенных для изготовления прессованных, кованых и катаных полуфабрикатов.
Изобретение относится к получению высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, предназначенных для изготовления прессованных, кованых и катаных полуфабрикатов.
Изобретение относится к получению высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, предназначенных для изготовления прессованных, кованых и катаных полуфабрикатов.

Изобретение относится к изделию из алюминиевого сплава с высоким сопротивлением внутреннему давлению при повышенных температурах и может быть использовано для применения в многослойных трубах в качестве санитарно-технических труб, труб отопления.
Изобретение относится к области металлургии, в частности к переработке алюмосодержащих шлаков, а также к получению сплавов на основе алюминия электролизом расплавов.
Изобретение относится к металлургии и может быть применено для получения титановых лигатур на основе алюминия. .

Изобретение относится к порошковой металлургии, в частности к получению порошковых композиционных материалов на основе боридов молибдена, вольфрама. .
Изобретение относится к области порошковой металлургии, в частности к способам получения металлокерамических композиционных материалов. .
Изобретение относится к порошковой металлургии, в частности к получению композиционных катодов для ионно-плазменного напыления многокомпонентных наноструктурных покрытий.
Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.
Изобретение относится к цветной металлургии и может быть применено при получении сплавов системы алюминий-свинец. .

Изобретение относится к порошковой металлургии, в частности к изготовлению градиентых керамических материалов на основе диоксида циркония. .
Изобретение относится к области металлургии, в частности к способам приготовления смеси порошка металла с углеродными нанотрубками, и может быть использовано в производстве электроугольных изделий и других областях техники.

Изобретение относится к порошковой металлургии и может быть использовано в производстве твердых сплавов для изготовления износостойких частей механизмов, режущих и буровых инструментов.
Изобретение относится к области цветной металлургии, конкретно к производству сплавов на основе алюминия с несмешивающимися компонентами, в частности к производству сплавов системы алюминий-свинец-олово.

Изобретение относится к металлургии цветных сплавов, в частности к флюсам для плавки и рафинирования деформируемых магниевых сплавов, содержащих иттрий. .
Изобретение относится к области металлургии и может быть использовано для получения слитков и отливок из алюминиевых и магниевых сплавов, содержащих в своем составе добавки переходных металлов, например цирконий, титан, скандий
Наверх