Способ обработки длинномерной стальной детали


 


Владельцы патента RU 2455386:

Закрытое акционерное общество "Торговый дом ПКНМ" (RU)

Изобретение относится к области обработки поверхности длинномерных прецизионных цилиндров скважинных насосов, работающих в условиях абразивного износа. Проводят обработку длинномерной стальной детали. При обработке осуществляют ионно-вакуумное предварительное и окончательное азотирование в тлеющем разряде, правку и хонингование. Правку и хонингование осуществляют после предварительного перед окончательным азотированием, при этом предварительное азотирование проводят при температуре 510-530°С в течение 8-14 часов и давлении 350-600 Па. Окончательное азотирование проводят при температуре 500-540°С в течение 2,0-4,0 часов и давлении 390-650 Па. Обеспечиваются требуемые геометрические характеристики обработанной детали и сохраняется целостность, равномерность и сплошность азотированного слоя.

 

Изобретение относится к области обработки поверхности металлического материала путем взаимодействия поверхности с ионизированным газом и может быть использовано, например, для обработки длинномерных прецизионных цилиндров скважинных насосов, работающих в условиях абразивного износа.

Известен способ изготовления деталей из конструкционных сталей (пат. RU 2250273, МПК7 С23С 8/26, опубл. 2002.12.20), включающий черновую механическую обработку, стабилизирующий отпуск, окончательную механическую обработку и двухступенчатое газовое азотирование с выдержкой в атмосфере аммиака сначала при температуре 510-515°С, затем при 540-545°С и последующее охлаждение. Окончательную механическую обработку проводят путем двухкратной чистовой механической обработки с промежуточным и окончательным отпуском в селитровой ванне при температуре 520-540°С в течение 0,25-0,5 ч, а двухступенчатое газовое азотирование деталей проводят в постоянном магнитном поле напряженностью 100-150 Э в течение 1-2 ч с последующим охлаждением со скоростью 20-30°С/мин.

Такой способ сложен, что объясняется необходимостью проведения перед азотированием окончательной механической обработки путем двукратной чистовой механической обработки с промежуточным и окончательным отпуском в селитровой ванне при температуре 520-540°С в течение 0,25-0,5 ч. Кроме того, при обработке таким способом в процессе азотирования происходят деформации длинномерной детали, требующие последующей механической обработки - правки и хонингования, что значительно ухудшает качество азотированного слоя.

Известен способ ионно-вакуумного азотирования длинномерной стальной детали в тлеющем разряде (RU 2044801 С1, МПК С23С 8/36, 27.09.1995 г.), включающий азотирование с комбинированным нагревом при давлении 2-3 мм рт.ст., температуре на рабочей кромке 430-480°С, плотности ионного тока 0,3 мА/см2, продолжительности 24 ч, после которого осуществляют дополнительный нагрев в вакууме или азотсодержащей атмосфере при температуре выше температуры азотирования, но не превышающей температуру разупрочнения материала.

При обработке таким способом происходят деформации длинномерной детали, требующие последующей механической обработки - правки и хонингования, что ухудшает качество азотированного слоя.

Наиболее близким к заявляемому и принятым в качестве прототипа является способ газового азотирования стальных изделий (авторское свидетельство SU 1502656, МПК4 С23С 8/26, опубл. 1989.08.23), включающий нагрев детали, предварительное азотирование при температуре 510±10°С, окончательное азотирование при температуре 530±5°С, последующее охлаждение. Для обеспечения точности геометрических параметров длинномерной детали требуется последующая механическая обработка - правка и хонингование.

Недостатками такого способа являются пониженная твердость и износостойкость обработанных поверхностей, недостаточная равномерность и однородность азотированного слоя. Последующая механическая обработка - правка и хонингование нарушает целостность, равномерность азотированного слоя, нарушает сплошность нитридной зоны и, как следствие, значительно ухудшает эксплуатационные свойства детали.

Задачей предлагаемого изобретения является создание способа ионно-вакуумного азотирования длинномерных стальных деталей, обеспечивающего геометрическую точность деталей и сохранение целостности, равномерности и сплошности азотированного слоя.

Поставленная задача решается усовершенствованием способа обработки длинномерной стальной детали, включающего ионно-вакуумное предварительное и окончательное азотирование в тлеющем разряде, правку и хонингование.

Это усовершенствование заключается в том, что правку и хонингование осуществляют после предварительного перед окончательным азотированием, при этом предварительное азотирование проводят при температуре 510-530°С в течение 8-14 ч и давлении 350-600 Па, а окончательное азотирование проводят при температуре 500-540°С в течение 2,0-4,0 ч и давлении 390-650 Па.

Осуществление предварительного азотирования при температуре 510-530°С в течение 8-14 ч и давлении 350-600 Па позволяет получить азотированный слой толщиной 0,2-0,3 мм с поверхностной нитридной зоной 6-10 мкм и твердостью HV 800-1100.

Однако, например, при изготовлении цилиндров скважинных насосов наличие разностенности ≥0,4 мм, остаточных напряжений ≥5 кгс/мм2 и обезуглероженного слоя ≥0,2 мм, полученных при заготовительном переделе, не позволяют получить требуемую прямолинейность канала цилиндра и необходимых диаметральных размеров.

Поэтому для обеспечения требуемой прямолинейности канала и необходимых диаметральных размеров требуется после предварительного азотирования проведение правки и хонингования. Однако при этом азотированный слой нарушается, его размер местно уменьшается до 0,15-0,2 мм, а твердость до 750-800 HV.

Выполнение после правки и хонингования окончательного азотирования при температуре 500-540°С в течение 2,0-4,0 ч и давлении 390-650 Па позволяет получить равномерный азотированный слой толщиной 0,25-0,35 мм с развитой нитридной зоной толщиной 8-12 мкм и твердостью HV 900-1200, сохранив полученные при правке и хонинговании прямолинейность оси длинномерной детали и необходимые диаметральные размеры.

Таким образом, в процессе предварительного азотирования, правки, хонингования и окончательного азотирования обеспечивается возможность формирования равномерного азотированного слоя требуемой твердости с развитой нитридной зоной и получения длинномерной детали необходимой геометрической точности.

Способ осуществляется следующим образом.

Стальные длинномерные детали помещают в вакуумную камеру ионно-вакуумной химико-термической обработки и осуществляют их нагрев в тлеющем разряде, предварительное азотирование при температуре 510-530°С в течение 8-14 ч и давлении 350-600 Па, обеспечивая получение азотированного слоя с необходимой толщиной 0,2-0,3 мм с поверхностной нитридной зоной 6-10 мкм и требуемой твердостью HV 800-1100 необходимой твердости. После этого выполняют правку на гидравлическом прессе, обеспечивая прямолинейность 0,08 мм на длине 1000 мм, и хонингование на горизонтально-хонинговальном станке с обеспечением требуемого номинального диаметра цилиндра, допуска на диаметр до 0,005 мм и разноразмерности до 0,02 мм. Затем выполняют окончательное азотирование при температуре 500-540°С в течение 2,0-4,0 ч и давлении 390-650 Па для получения требуемой толщины и твердости азотированного слоя, сохраняя при этом геометрические параметры канала цилиндра, полученные после правки и хонингования.

Предлагаемым способом обработали цилиндры скважинных штанговых насосов из стали 38Х2МЮА длиной 4262+10 мм, внутренним диаметром 44,45+0,05 мм, наружным диаметром 57,85-0,3. Детали размещали в камере с использованием специальной оснастки по 18 штук. Азотосодержащий газ (смесь 1 части азота и 3 частей водорода) подавали в течение всего цикла предварительного азотирования. Предварительное азотирование выполняли при температуре 530°С в течение 10 ч и давлении 420 Па.

После чего выполняли правку на гидравлическом прессе с контролем по внутреннему каналу цилиндра, обеспечивая прямолинейность до 0,08 мм на 1000 мм и хонингование на размер 44,45+0,04мм с обеспечением разноразмерности 0,02 мм на всей длине цилиндра. Окончательное азотирование производили в течение 3 часов при температуре 510°С и давлении 450 Па.

В результате получили детали с равномерно развитым азотированным слоем толщиной 250-300 мкм и твердостью на поверхности 1100-1200 HV, на глубине 10 мкм - 1000-1100 HV, на глубине 20 мкм - 950-1000 HV, на глубине 50 мкм - 850-920 HV, на глубине 150 мкм - 600-650HV, на глубине 250 мкм - 350-400HV. Азотированный слой имел равномерную и умеренно развитую нитридную зону толщиной 5-8 мкм. При этом прямолинейность цилиндра была в пределах 0,08 мм на 1000 мм, а увеличение внутреннего диаметра не превысило 0,01 мм и не вышло за поле допуска и требуемые параметры по разноразмерности.

Таким образом, использование предлагаемого способа позволяет обеспечить требуемые геометрические характеристики обработанной детали и получить равномерный азотированный слой требуемой твердости.

Способ обработки длинномерной стальной детали, включающий ионно-вакуумное предварительное и окончательное азотирование в тлеющем разряде, правку и хонингование, отличающийся тем, что правку и хонингование осуществляют после предварительного перед окончательным азотированием, при этом предварительное азотирование проводят при температуре 510-530°С в течение 8-14 ч и давлении 350-600 Па, а окончательное азотирование проводят при температуре 500-540°С в течение 2,0-4,0 ч и давлении 390-650 Па.



 

Похожие патенты:

Изобретение относится к вакуумной ионно-плазменной технологии, а именно к устройствам для обработки длинномерных изделий. .

Изобретение относится к способу получения изделий из материала на основе титана с покрытием, представляющих собой полусферическую головку медицинской полусферической фрезы.
Изобретение относится к области химико-термической обработки сталей ионно-вакуумным азотированием и может быть использовано для упрочнения деталей с резьбовой поверхностью.

Изобретение относится к области металлургии, а именно способам химико-термической поверхностной обработки титановых сплавов, и может быть использовано в машиностроении для повышения износостойкости и коррозионной стойкости деталей машин.
Изобретение относится к области обработки поверхности металлического материала и может быть использовано для обработки длинноменых прецизионных цилиндров скважинных насосов, работающих в условиях абразивного износа.

Изобретение относится к области термической, химико-термической обработки и может быть использовано в машиностроении и других областях промышленности. .

Изобретение относится к области химико-термической обработки, а именно вакуумному ионно-плазменному азотированию, и может быть использовано в различных отраслях машиностроения для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента, а также позволяет интенсифицировать процесс азотирования.
Изобретение относится к способу получения износоустойчивых металлических поверхностей. .

Изобретение относится к области химико-термической обработки, а именно вакуумному ионно-плазменному азотированию, и может быть использовано в различных отраслях машиностроения для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента.

Изобретение относится к способу упрочняющей обработки деталей механизмов и машин, штампового и режущего инструмента. .
Изобретение относится к способам повышения стойкости металла к коррозии и может быть использовано в подземном трубопроводном транспорте

Изобретение относится к машиностроению, в частности к способу азотирования деталей узлов трения скольжения с получением наноструктурированного приповерхностного слоя. Проводят предварительную термообработку деталей путем закалки при температуре 920-940°C, последующего высокого отпуска с нагревом до 600-650°C в течение 2-10 часов и удаления обезуглероженного слоя. Затем осуществляют ионно-плазменное азотирование в диапазоне температур 500-570°C при напряжении на катоде 300-320 B, плотности тока 0,20-0,23 мА/см2, при использовании в качестве газовой среды аммиака со степенью диссоциации от нуля до 80%, расходе аммиака до 20 дм3/ч, давлении в камере при катодном распылении 1,3-1,35 Па, при насыщении 5-8 ГПа. Указанное азотирование проводят в режиме циклического изменения температуры и степени диссоциации аммиака, при этом в первой половине цикла температура составляет 570°C при максимальном азотном потенциале, а во второй половине цикла температуру снижают до 500°C, при этом азотный потенциал снижают за счет увеличения степени диссоциации аммиака до 40-80%, при этом число упомянутых циклов должно быть не менее 10. Азотированная деталь имеет приповерхностный слой, содержащий диффузионный слой с α-фазой с наноразмерными некогерентными нитридами легирующих элементов, которая образует мягкую матрицу, и поверхностный слой с твердыми включениями, представляющими собой наночастицы нитридов железа ε-фазы, сформированные путем фазовой локальной перекристаллизации решеток нитридов железа, которая обеспечивается циклическим изменением температуры азотирования и степени диссоциации аммиака. Обеспечивается повышение износостойкости приповерхностных слоев материала и увеличивается долговечность узлов трения скольжения из материала с таким составом приповерхностного слоя. 2 н.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к способу формирования микроструктурированного слоя нитрида титана. Формирование микроструктурированного слоя нитрида титана осуществляют путем воздействия на титановую подложку фемтосекундным лазерным излучением с энергией в импульсе порядка 100 мкДж и с плотностью мощности в импульсе порядка 1013 Вт/см2 в среде жидкого азота. Обеспечиваются износостойкие и коррозионно-стойкие покрытия на изделиях из титана и его сплавов, а также улучшаются антифрикционные свойства их поверхностей. 2 ил.

Изобретение относится к машиностроению, в частности к способам повышения механических свойств приповерхностных слоев деталей машин из сплавов на основе железа с получением субмикро- или наноструктурированного состояния диффузионных слоев. Способ включает сборку пакета из попеременно чередующихся стальных листов, имеющих различный химический состав, вакуумирование и нагрев пакета, горячую деформацию пакета по высоте при температуре, находящей между значениями температур полиморфных превращений обоих сплавов, при этом после горячей деформации из пакета вырезают заготовки деталей таким образом, чтобы при последующем азотировании направление межслойных границ в заготовке детали совпадало с направлением диффузионного потока азота, после чего проводят азотирование с получением субмикро- и наноструктурированного состояния диффузионного приповерхностного слоя на поверхности детали. Способ позволяет повысить механические свойства приповерхностных слоев материала, формирующихся в результате азотирования, и, соответственно, увеличить долговечность деталей. 9 ил., 1 пр.
Изобретение относится к способу ионно-плазменного азотирования длинномерной стальной детали. Способ включает нагрев детали, изотермическую выдержку, предварительное азотирование, окончательное азотирование и охлаждение. Начинают охлаждение с температуры 530°C до 370-390°C в течение 100-140 минут в плазме тлеющего разряда. Затем проводят охлаждение до 240-260°C в течение 100-140 минут. Окончательное охлаждение до 140-160°C в течение 100-140 минут проводят в печи без воздействия плазмы. Подачу ионизирующих газов осуществляют циклически. При нагреве с температуры 200-220°C ведут подачу газовой смеси водород, азот, метан в течение 15-20 минут, далее до температуры нагрева 400-440°C в течение 100-140 минут и при изотермической выдержке в течение 20-40 минут осуществляют подачу водорода, а при дальнейшем нагреве до 480°C подают водород в течение 20-30 минут. Предварительное азотирование ведут с участием водорода и азота в течение 100-140 минут, а окончательное азотирование ведут с участием азота, водорода и метана в течение 14-16 часов. Охлаждение с температуры 530°C - 370-390°C ведут в среде азота и водорода в течение 120 минут и дальнейшее охлаждение до 150-170°C в течение 240 минут ведут с участием только азота. В результате достигается сохранение геометрических размеров длинномерных стальных деталей за счет отсутствия деформации деталей после обработки и сохранения поверхности металла от образования окисной пленки.

Изобретение относится к машиностроению, в частности к способу ионоазотирования деталей машин с использованием импульсов электромагнитного поля. Обеспечивают подачу в камеру для азотирования реакционного газа, его нагрев с одновременным генерированием в камере переменного электромагнитного поля посредством соленоида. Внутри соленоида располагают обрабатываемую деталь с направлением вектора магнитной индукции перпендикулярно обрабатываемой поверхности детали и изменением в процессе азотирования его величины с формированием прямоугольных импульсов, длительность и периодичность которых обеспечивает ускорение движения и внедрения ионов азота в обрабатываемую поверхность за счет вертикального фронта нарастания напряженности магнитного поля. Устройство для осуществления упомянутого способа содержит камеру для азотирования детали, устройство для подачи реакционного газа в упомянутую камеру на обрабатываемую деталь, нагревательное устройство и устройство для генерирования электромагнитного поля. Устройство для генерирования электромагнитного поля выполнено в виде расположенного вокруг упомянутой камеры соленоида, обеспечивающего генерирование импульсного электромагнитного поля с прямоугольными импульсами с направлением вектора магнитной индукции перпендикулярно обрабатываемой поверхности находящейся внутри него детали. Обеспечивается одновременное ускорение процесса азотирования и повышение механических свойств приповерхностных слоев материала, формирующихся в результате одновременного азотирования и воздействия как на ионы азота, так и на материал обрабатываемой детали импульсами сравнительно маломощного магнитного поля. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности, для поверхностного упрочнения материалов. Способ азотирования стальной детали в плазме тлеющего разряда включает катодное распыление, вакуумный нагрев детали в плазме тлеющего разряда, состоящей из смеси азотсодержащего и инертного газов, с формированием участков с разнородной структурой стали, при этом переходный участок между участками с разнородной структурой имеет микронеоднородную структуру с постепенным изменением одного вида в другой. Разнородную структуру формируют в виде макронеоднородной структуры стали посредством перфорированного экрана, выполненного с отверстиями диаметром d, причем d>4·l, где l - толщина катодного слоя, и плотно прилегающего к обрабатываемой детали, и экрана для создания эффекта полого катода, плотно прилегающего к перфорированному экрану, для обеспечения возможности получения на поверхности участков, азотированных в тлеющем разряде с эффектом полого катода, чередующихся с неазотированными участками. Обеспечивается повышение контактной долговечности и износостойкости упрочненного слоя за счет локальной обработки и создания макронеоднородной структуры материала. 4 ил., 1 пр.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов. Способ азотирования стальной детали в плазме тлеющего разряда включает размещение стальной детали и перфорированного экрана в вакуумной камере, осуществление катодного распыления, вакуумный нагрев детали в плазме тлеющего разряда, состоящей из смеси азотсодержащего и инертного газов, с формированием участков с разнородной структурой стали, при этом переходный участок между участками с разнородной структурой имеет микронеоднородную структуру с постепенным изменением одного вида в другой. Разнородную структуру стали формируют в виде макронеоднородной структуры посредством перфорированного экрана, выполненного с отверстиями диаметром d, причем 2·l<d<4·l, где l - толщина катодного слоя, и плотно прилегающего к обрабатываемой детали, для обеспечения возможности получения на поверхности чередующихся азотированных в тлеющем разряде с эффектом полого катода участков с неазотированными участками. Обеспечивается повышение контактной долговечности и износостойкости упрочненного слоя за счет локальной обработки и создания макронеоднородной структуры материала. 5 ил., 1 пр.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов. Способ азотирования стальной детали в плазме тлеющего разряда включает размещение стальной детали и перфорированного экрана в вакуумной камере, осуществление катодного распыления, вакуумный нагрев детали в плазме тлеющего разряда, состоящей из смеси азотсодержащего и инертного газов, с формированием участков с разнородной структурой стали, при этом переходный участок между участками с разнородной структурой имеет микронеоднородную структуру с постепенным изменением одного вида в другой. Разнородную структуру формируют в виде макронеоднородной структуры стали посредством перфорированного экрана, выполненного с отверстиями диаметром d, причем d>4·l, где l - толщина катодного слоя, и плотно прилегающего к обрабатываемой детали для обеспечения возможности получения на поверхности участков, азотированных в тлеющем разряде, чередующихся с неазотированными участками. Обеспечивается повышение контактной долговечности и износостойкости упрочненного слоя за счет локальной обработки и создания макронеоднородной структуры материала. 4 ил., 1 пр.
Изобретение относится к области машиностроения, к способам образования защитных покрытий на изделиях, имеющих тонкостенные и толстостенные части и выполненных из стали или титанового сплава. Проводят очистку изделий в вакуумной камере в среде инертного газа, затем осуществляют ионное травление, ионно-плазменное азотирование, чередующееся с ионным травлением, и нанесение нанокомпозитного покрытия методом физического осаждения из паровой фазы посредством магнетронов. Температуру тонкостенных и толстостенных частей изделий выравнивают во время очистки изделий в среде инертного газа, ионного травления, ионно-плазменного азотирования, чередующегося с ионным травлением, и нанесения нанокомпозитного покрытия путем размещения изделий так, чтобы тонкостенная часть одного изделия располагалась между толстостенными частями других изделий. Упомянутое нанесение нанокомпозитного покрытия проводят путем нанесения микрослоя из нанослоев толщиной 1-100 нм из титана и хрома и последующего нанесения микрослоя из нанослоев толщиной 1-100 нм из нитридов титана и хрома. В частных случаях осуществления изобретения микрослой из титана и хрома наносят толщиной 0,3-0,8 мкм путем последовательного прохождения изделия перед магнетронами с мишенями из указанных материалов. Микрослой из нитридов титана и хрома наносят толщиной 2,5-3 мкм путем последовательного прохождения изделия перед магнетронами с мишенями из титана и хрома при подаче в камеру азота. Повышается срок службы покрытия в условиях эрозии, коррозии и высоких температур. 2 з.п. ф-лы, 1 табл., 1пр.
Наверх