Линейка лазерных диодов

Изобретение относится к полупроводниковой электронике. Линейка лазерных диодов состоит из параллельно включенных лазерных диодов на основе полупроводниковых А3В5 лазерных гетероструктур, многослойных окислов и многослойной контактной металлизации на верхней и нижней плоскостях линейки, при этом внешние проводящие слои металлизации выполнены из германия. Технический результат заключается в обеспечении снижения механических напряжений, возникающих в линейке лазерных диодов в процессе ее изготовления. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к полупроводниковой электронике, в частности к производству СВЧ мощных арсенид-галлиевых дискретных приборов и интегральных микросхем, силовых гибридных модулей, компьютерных микросхем и плат, а также может быть использовано в оптоэлектронике для исследования, разработки и производства мощных полупроводниковых лазеров, лазерных полупроводниковых матриц и лазерных систем на их основе.

Мощные полупроводниковые лазеры на гетероструктурах А3В5 и твердых растворах на их основе являются наиболее эффективными для работы в диапазоне длин волн 0,5-1,8 мкм; коэффициент преобразования электрической энергии в направленную световую волну достигает 75% (1-3). Такие лазеры используются для накачки волоконных усилителей и твердотельных лазеров, для записи информации, в производстве принтеров, систем навигации, медицинской аппаратуры и мощных технологических обрабатывающих устройств. Особенно перспективным может быть применение лазерных матриц для создания сверхмощных космических излучателей, использующих энергию солнца, поскольку для работы полупроводниковых лазеров требуется низковольтный постоянный ток, вырабатываемый солнечными батареями.

Экспериментальный сравнительный анализ полупроводниковых лазеров ряда ведущих фирм и анализ патентной литературы показал, что все фирмы используют классический вариант жесткого сочетания материалов для производства лазеров; вариант назван классическим, поскольку использована самая распространенная в полупроводниковой электронике система МОП (М - металл, О - окисел, П - полупроводник).

Представление лазерной структуры в виде МОП системы дает возможность использования методов химической термодинамики для оценки структурной и фазовой нестабильности граничных состояний в линейке лазерных диодов, что исключительно важно при проектировании и в производстве надежных и долговечных полупроводниковых лазеров и сложных лазерных матриц (4).

Основой лазерной МОП системы является двойная полупроводниковая гетероструктура А3В5. Среди большого количества соединений А3В5 и твердых растворов на их основе, образованных элементами 3-й группы (Al, Ga, In) и элементами 5-й группы (N, P, As, Sb, Bi), наиболее распространенным в производстве полупроводниковых лазеров различного назначения является арсенид галлия. Арсенид галлия имеет структуру кристалла сфалерита. Структуру сфалерита легко представить как комбинацию двух вставленных одна в другую кубических гранецентрированных решеток, смещенных относительно друг друга на четверть диагонали и состоящих из одного вида атомов каждая. Такую комбинацию решеток, но образованных атомами одного вида (решетку алмаза), имеют элементы 4-й группы (Si, Ge, С).

Основные физические свойства соединений А3В5 (арсенида галлия, фосфида индия) и некоторых элементов 4-й группы представлены в таблице.

Физические свойства арсенида галлия, фосфида индия и германия
GaAs Ge InP Au
1 2 3 4 5
Постоянная решетки, А° 5,65 5.65
Расстояние между двумя ближайшими атомами, А° 2,45 2,45
Коэффициент теплового расширения, 1/град 5,39×106 6,1×106 5,39×106 14,2×106
Плотность в твердом состоянии, г см3 5,316 5,328 19,3
Удельное сопротивление, Ом см 3,7×108 47
Теплопроводность при 300°К, кал см с град 0,11 0,14 0,16 0,7

Видно, что постоянная решетки и коэффициент теплового расширения арсенида галлия и германия сходны при значительном различии их физико-технологических характеристик.

Идея изобретения состоит в том, чтобы создать стабильную систему «полупроводник - полупроводник», (1) используя одинаковость свойств элементов в линейке, и улучшить при этом технологические характеристики линейки, (2) используя различия в свойствах сочетающихся элементов МОП системы.

На фиг.1 показана линейка лазерных диодов - LDB (5). Габариты LDB: длина - 10 мм, толщина - от 50 до 150 мкм, ширина - 0,8-3,0 мм. LDB может содержать 19, 25, 50, 75 и более лазерных диодов (single laser diode emitter - SLDE).

Структура SLDE изображена на фиг.2. Основа структуры - слои разбавленных твердых растворов на основе арсенида галлия. После создания полупроводниковой гетероструктуры начинается сложный процесс образования многослойной металлизации.

На верхней и нижней плоскостях полупроводниковой (П) основы параллельно гетероструктурным слоям создается многослойная контактная металлизация (М): вначале напыляются тонкие слои металлов для получения омических (невыпрямляющих) контактов. Затем создается трехслойный металлический барьер, например (Ti-Mo-Ni), между омическими контактами и внешними проводящими слоями золота. Внешние слои металлизации, как показал анализ LDB и SLDE всех фирм, производящих линейки лазерных диодов, состоят из (Au) золота толщиной более 350 nm, фиг.3.

На две параллельные торцевые грани кристалла перпендикулярно полупроводниковым слоям и направлению световой волны наносятся слои окислов (О) - переднее и заднее зеркала. Так производится лазерная полупроводниковая МОП структура.

Прототипом предлагаемого изобретения является линейка лазерных диодов, фиг.4. которая использована для разработки, изготовления и исследования мощных полупроводниковых лазеров с «X-Y-Z» микроканальной системой охлаждения (6). Мощность излучения лазера более 60 Вт в непрерывном режиме излучения при температуре 25 град. Длина волны l=808 нм; дифференциальный коэффициент полезного действия - 60%. Однако при хороших электрических характеристиках лазера - оптические свойства его неприемлемы: кривизна линейки до монтажа на теплообменник, а также кривизна линии излучения лазера превышает 1 мкм. Это результат создания напряженной и, следовательно, нестабильной МОП системы, из-за жесткого сочетания золота и других металлов толщиной более 800 (КТР золота - 14,2×106 град-1) с двойной полупроводниковой А3В5 гетероструктурой (КТР - 5,39×106 град-1, более чем в 2,5 раза) и торцевыми многослойными окислами (оксиды Al, Si, Zr).

Целью изобретения является создание стабильной термодинамической лазерной МОП системы для улучшения физико-технологических характеристик линейки лазерных диодов.

Поставленная цель достигается тем, что:

1. Линейка лазерных диодов, состоящая из параллельно включенных лазерных диодов на основе полупроводниковых А3В5 лазерных гетероструктур, имеющих на внешних торцах покрытия из многослойных окислов (заднее и передние зеркала), а также многослойную контактную металлизацию на верхней и нижней плоскостях линейки, отличающаяся тем, что проводящие слои контактной металлизации выполнены из полупроводниковых элементов, сходных по типу и параметрам кристаллической решетки и по коэффициенту термического расширения с полупроводниковой А3В5 лазерной гетероструктурой и твердыми растворами на основе А3В5, фиг.5.

2. Линейка лазерных диодов по п.1, отличающаяся тем, что внешние проводящие слои контактной металлизации выполнены из (промежуточного между (31) - Ga и (33) - As элементами системы Менделеева Д.И.) элемента (32) германия с добавлением элементов, образующих требуемые проводимость и омический контакт.

3. Линейка лазерных диодов по п.1, отличающаяся тем, что соотношение толщин между внешними проводящими слоями контактной металлизации на верхней и нижней плоскостях линейки соответствует нулевому искривлению линейки (Smile=0) и минимальному напряжению в полупроводниковых А3В5 лазерных гетероструктурах.

Изобретение применимо ко всем типам полупроводниковых лазеров и лазерных матриц. Таким образом могут быть изготовлены лазеры однокристальные, то есть лазеры, состоящие из одного лазерного диода, многокристальные лазеры - линейки лазерных диодов и лазерные матрицы, которые могут состоять из десятков линеек лазерных диодов. При этом проводящий полупроводниковый слой может выполняться, как с одной стороны (+), так и с двух сторон гетероструктуры А3В5 (+ и --).

Изобретение отличается простотой технической реализации. Изобретение способствует совершенствованию технологии производства полупроводниковых лазеров, поскольку получение малонапряженных лазерных линеек с нулевым смайлом в многослойных МОП системах (металл - окисел - полупроводник) представляет сложную технологическую задачу.

На приводимых в описании фигурах изображено следующее.

Фиг.1. Линейка лазерных диодов (LDB).

Фиг.2. Схема лазерной двойной гетероструктуры для одинарного диода (SLDE).

Фиг.3. Система металлизации лазерной А3В5 гетероструктуры в LDB.

Фиг.4. Лазерная МОП система (Металл - Окисел - Полупроводник) - прототип.

Фиг.5 Лазерная ПОП система (Полупроводник - Окисел - Полупроводник) - изобретение.

Литература

1. Zh.I.Alferov and others. High power CW operation of InGaAsN lasers at 1,3 µm. Electron. Lett., 1999, vol.35, No.19, pp.2-5.

2. Zh.I.Alferov and others. InAs/InGaAs/GaAs quantum dot lasers of 1,3 µm range with high (88%) differential efficiency. IEEE Journal of Quantum Electronics, 2002, Vol.38, No.19, 1104-1106.

3. A.B.Лютецкий и др. Мощные диодные лазеры (l=1,7-1,8 мкм) на основе асимметричных квантово-размерных InGaAsP/InP гетероструктур раздельного ограничения. ФТП, 2009, т.43, вып.12, с.1646-1649.

4. В.А.Филоненко. Механизм адгезии в системах металл - диэлектрик. Ж. Физ. Химии. 1976, 3, 726-729.

5. М.Jansen and others. High performance laser diode bars with aluminum-free active regions. Optics express, 1999, Vol.4, No.1.

6. V.Apollonov, S.Derzhavin, V.Filonenko and others. Higly efficient heat exchanges for laser diode arrays. Proceedings of SPIE, Vol.3889, 2000, 71-81.

1. Линейка лазерных диодов, состоящая из параллельно включенных полупроводниковых лазерных диодов на основе полупроводниковых A3В5 лазерных гетероструктур, многослойных окислов - зеркал, а также многослойной контактной металлизации на верхней и нижней плоскостях линейки лазерных диодов, отличающаяся тем, что внешние проводящие слои металлизации на верхней и нижней плоскостях линейки лазерных диодов выполнены из германия.

2. Линейка лазерных диодов по п.1, отличающаяся тем, что соотношение толщин между внешними проводящими слоями металлизации на верхней и нижней плоскостях линейки соответствует нулевому искривлению линейки (Smile=0) и минимальному напряжению в линейках лазерных диодов.



 

Похожие патенты:

Изобретение относится к лазерной технике и может быть использовано для изготовления мощного, с равномерной диаграммой направленности излучения, излучателя лазерного полупроводникового инжекционного импульсного режима работы с нормированной силой излучения в телесном угле с расходимостями в двух взаимно перпендикулярных направления у и х, превышающими расходимость излучения используемых блоков лазерных диодов соответственно в плоскостях перпендикулярной и параллельной || плоскостям их р-n-переходов по уровню 0,5.

Изобретение относится к высокояркостным и с высокой плотностью выходной мощности источникам излучения, преимущественно на основе лазерных диодов. .

Изобретение относится к высокояркостным и с высокой плотностью выходной мощности источникам излучения, преимущественно на основе лазерных диодов. .

Изобретение относится к полупроводниковой технике, квантовой оптоэлектронике и может быть использовано для разработки мощных когерентных импульсных источников излучения на основе эпитаксиально-интегрированных гетероструктур.

Изобретение относится к оптико-электронному приборостроению, а именно к лазерным источникам света, и может быть использовано в оптических системах, предназначенных, например, для указания направления или цели.

Изобретение относится к оптико-электронному приборостроению. .

Изобретение относится к квантовой электронной технике и может использоваться в системах лазерной космической связи и в системах лазерной атмосферной связи. .

Изобретение относится к квантовой электронной технике, в частности к оптическим передающим модулям с инжекционным лазером как источником излучения. .

Изобретение относится к оптико-электронному приборостроению, в частности к лазерным источникам света, и может быть использовано в оптических системах, предназначенных, например, для указания направления или цели. Модуль лазерный содержит объектив, в фокальной плоскости которого расположен лазерный диод, с выходным окном, обращенным в сторону объектива и систему теплоотвода. Объектив установлен с возможностью поворота вокруг и перемещения вдоль оптической оси. Лазерный диод установлен с возможностью перемещения в плоскости, перпендикулярной оптической оси, во взаимно перпендикулярных направлениях, а система теплоотвода, включающая датчик температуры, термоэлектронный преобразователь, радиатор и вентилятор, дополнена осушенным азотом, заполняющим внутренний объем лазерного модуля. Технический результат - обеспечение возможности фокусировки объектива и точной регулировки установки лазерного диода в направлениях вдоль оси и перпендикулярно оптической оси объектива по осям X и Y, обеспечение работы в заданном диапазоне температуры окружающей среды, повышение надежности, снижение потребляемой мощности. 2 ил.

Изобретение относится к лазерным модулям, полупроводниковым источникам света. Лазерный модуль включает составной корпус, в котором соосно расположены оптическая система и лазерный диод, плату со схемой управления лазерным диодом, выполняющей функции стабилизации мощности излучения, соединенную с выводами лазерного диода. Указанная плата дополнительно содержит схему регулировки выходной оптической мощности лазерного диода и схему импульсного режима, а также разъем с выводами для подачи импульсного сигнала, для контроля импульсного сигнала, для подачи питания, для подачи управляющего напряжения. Технический результат заключается в расширении функциональных возможностей лазерного модуля за счет обеспечения его работы с различными внешними устройствами в режиме генерации непрерывной мощности и в режиме генерации импульсной мощности с возможностью регулировки как уровня непрерывной мощности, так и амплитуды импульсной мощности, а также функционального размещения в аппаратуре применения. 8 з.п. ф-лы, 3 ил.

Использование: для монтажа кристаллов VCSEL на кристаллодержателе. Сущность изобретения заключается в том, что способ монтажа кристаллов VCSEL на кристаллодержателе содержит следующие этапы: формирование мезаструктур р-типа посредством обеспечения электрических р-контактов на верхней части мезаструктур, формирование мезаструктуры n-типа посредством покрытия мезаструктуры электрически изолирующим пассивирующим слоем, перекрывающим по меньшей мере р-n переход мезаструктуры, осаждение несмачиваемого слоя на стороне соединения кристаллов VCSEL, осаждение дополнительного несмачиваемого слоя на стороне соединения кристаллодержателя, причем упомянутые несмачиваемые слои осаждают с рассчитанным рисунком или их рисунки формируют после осаждения для формирования соответствующих областей соединения на кристаллодержателе и кристаллах VCSEL, области соединения которых обеспечивают смачиваемую поверхность для припоя, нанесение припоя на области соединения по меньшей мере одной из двух сторон соединения, размещение кристаллов VCSEL на кристаллодержателе и припаивание кристаллов VCSEL к кристаллодержателю без фиксации кристаллов VCSEL относительно кристаллодержателя, чтобы допустить перемещение кристаллов VCSEL на кристаллодержателе за счет сил поверхностного натяжения расплавленного припоя, причем кристалл VCSEL содержит решетку VCSEL с излучением с нижней стороны, которая припаяна своей мезаструктурой к кристаллодержателю, при этом до осаждения несмачиваемого слоя на сторону соединения кристаллов VCSEL осаждают первый металлический слой, который электрически подключен к n-контактам VCSEL и перекрывает мезаструктуру n-типа, причем упомянутые n-контакты образуют проводящую сеть между мезаструктурами р-типа VCSEL для электрического соединения VCSEL и распределения тока равномерно среди мезаструктур р-типа, при этом второй металлический слой осаждают в то же время, что и первый металлический слой, чтобы перекрыть мезаструктуры р-типа и р-контакты, причем первый металлический слой и второй металлический слой механически стабилизируют кристаллы VCSEL так, что электрическое соединение с n-контактом находится на той же высоте, что и р-контакты. Технический результат: обеспечение возможности повышения точности выравнивания кристаллов VCSEL на кристаллодержателе без занимающих много времени мер. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к лазерной технике. Лазерный модуль содержит несколько подмодулей (1), размещенных вдоль первой оси (10) бок о бок на общем носителе, причем каждый из упомянутых подмодулей (1) содержит область (8) лазера, образованную одной или несколькими матрицами полупроводниковых лазеров (5) на поверхности подмодулей (1), и при этом лазерное излучение, испускаемое упомянутыми полупроводниковыми лазерами (5), образует распределение интенсивности в рабочей плоскости, обращенной к упомянутой поверхности подмодулей (1). Подмодули (1) и области (8) лазера выполнены и размещены так, что выступы областей (8) лазера смежных подмодулей (1) частично перекрываются в направлении, перпендикулярном упомянутой первой оси. Упомянутые области (8) лазера образованы компоновкой из упомянутых матриц полупроводниковых лазеров (5), которая содержит два параллельных боковых края (3). Упомянутые параллельные боковые края (3) смежных областей (8) лазера параллельны друг другу и наклонены под углом β к упомянутой первой оси (10), причем 0°<β<90°. Упомянутые области (8) лазера выполнены с возможностью генерировать однородное распределение интенсивности в рабочей плоскости в направлении, параллельном первой оси посредством наклоненной компоновки областей (8) лазера. Технический результат заключается в обеспечении возможности генерации лазерной линии без необходимости использования дополнительной оптики. 8 з.п. ф-лы, 5 ил.

Изобретение относится к квантовой электронике. Полупроводниковый лазер содержит гетероструктуру, выращенную на подложке GaAs, ограниченную перпендикулярными оси роста торцовыми поверхностями, с нанесенными на них покрытиями, с одной стороны - отражающим, а на другой - антиотражающим, и включающую волноводный слой с активной областью, сформированный p-i-n-переход, контактный слой и ограничительные слои, показатели преломления последних меньше показателей преломления подложки и других слоев, контактный слой и смежный с ним ограничительный слой легированы акцепторами, а подложка и другой ограничительный слой легированы донорами. В гетероструктуру включен буферный слой GaAs, легированный донорами и размещенный между подложкой и ограничительным слоем, а активная область волноводного слоя содержит, по крайней мере, три квантовые ямы InGaAs, выполненные в p-i-n-переходе, сформированном волноводным, буферным и ограничительными слоями, кроме того, толщины волноводного слоя и смежного с буферным ограничительного слоя выбраны таким образом, чтобы обеспечить потери на выход излучения в подложку в диапазоне 10-50 см-1 и угол выхода излучения в подложку φ в диапазоне 0-3°. Технический результат заключается в обеспечении возможности снижения расходимости излучения. 7 з.п. ф-лы, 1 ил.

Данный нитридный полупроводниковый ультрафиолетовый светоизлучающий элемент обеспечивается: базовой секцией структуры, которая включает в себя сапфировую подложку (0001) и слой AlN, сформированный на подложке; и секцией структуры светоизлучающего элемента, которая включает в себя слой покрытия n-типа полупроводникового слоя AlGaN n-типа, активный слой, имеющий полупроводниковый слой AlGaN, и слой покрытия p-типа полупроводникового слоя AlGaN p-типа, при этом упомянутый слой покрытия n-типа, активный слой и слой покрытия p-типа сформированы на базовой секции структуры. Плоскость (0001) подложки наклонена под углом наклона, равным 0,6-3,0°, и мольная доля AlN слоя покрытия n-типа равняется 50% или более. Изобретение обеспечивает возможность улучшить качество кристалла основанного на AlGaN полупроводникового слоя, сформированного на сапфировой подложке (0001), посредством оптимизации угла наклона, и увеличить светоизлучающий выход нитридного полупроводникового ультрафиолетового светоизлучающего элемента. 4 з.п. ф-лы, 13 ил.

Изобретение относится к области лазерной техники

Группа изобретений относится к средствам хранения и выдачи носителей информации (футляров) в особо оборудованных помещениях, к объединенным с этими средствами высотным источникам комбинированного лазерного освещения территорий и к носовым опорам светозащитных очков для работы на участках разной освещенности. Хранение информации организовано по генетической аналогии (как в двойных цепочках ДНК). Футляры нанизаны на скрепленные парами вертикально подвешенные нити, каждая из которых может быть быстро изъята по коду на чипах внутри головного футляра нити. В футлярах хранится информация, необходимая для работы лицам определенных профессий. Освещение производится отдельными группами лазеров, генерирующих лучи разного цвета. Группа лазеров включается, когда из хранилища изымается соответствующая нить с футлярами (при возвращении нити лазеры выключаются). Лазеры снабжаются электроэнергией от сферических солнечных батарей, расположенных предпочтительно выше облаков. Техническим результатом является регулирование поступления энергии на Землю в местах интенсивного развития техники. 2 н. и 2 з.п. ф-лы, 22 ил.
Наверх