Способ получения оксида цинка

Изобретение может быть использовано в химической промышленности. Способ получения оксида цинка включает измельчение порошка металлического цинка, обработку реакционной смесью, содержащей аммиак, и прокаливание полученной массы. В качестве реакционной смеси используют аммиачно-карбонатный раствор (АКР). Обработку реакционной смесью ведут при массовом соотношении компонентов Zn:AKP=1:(1÷2), a прокаливание полученного материала осуществляют при 240-310°С. Изобретение позволяет увеличить удельную поверхность оксида цинка. 1 табл., 3 пр.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к способу получения химически чистого оксида цинка с высокой удельной поверхностью, который может быть использован в промышленности как компонент катализаторов, сорбентов, люминофоров.

УРОВЕНЬ ТЕХНИКИ

Известен способ получения оксида цинка, включающий окисление металлического цинка и термообработку, отличающийся тем, что осуществляют электрохимическое окисление металлического цинка в водном растворе хлорида натрия с концентрацией 2-5 масс. %, при плотности переменного синусоидального тока промышленной частоты 1,0-2,0 A/см2 и температуре 50-90°С, термообработку проводят при 105-400°С [Патент RU 2002116348 A. C01G 9/02, опубл. в БИ №7, 2004 г.]. Недостатком данного способа являются высокие затраты электроэнергии на окисление металлического цинка и наличие жидких отходов.

Известен способ получения оксида цинка из цинксодержащего техногенного сырья, включающий выщелачивание цинксодержащих материалов раствором едкого натра, очистку раствора от кремнезема оксидом кальция, разложение раствора затравкой в виде оксида цинка, отделение выпавшего осадка оксида цинка, сушку и прокалку последнего с получением конечного продукта, отличающийся тем, что с целью упрощения процесса и повышения извлечения ценного компонента при переработке техногенного сырья с повышенным содержанием оксида свинца ввод оксида кальция осуществляют непосредственно на выщелачивание, куда одновременно подается дополнительно элементарная сера [Патент RU 99102265 А. С22В 19/34, опубл. в БИ №7, 2000 г.]. Недостатком данного способа является большое количество технологических операций и наличие в готовом продукте ряда примесей, ограничивающих его применение в качестве сырья для производства катализаторов и сорбентов.

Наиболее близким к предлагаемому изобретению, по технической сущности и достижимому результату, то есть прототипом, является способ получения оксида цинка из цинксодержащего сырья, включающий его измельчение и обработку газовоздушной смесью, в котором в качестве цинксодержащего сырья используют порошок металлического цинка, обработку газовоздушной смесью проводят совместно с его измельчением при 60-100°С в течение 30-90 минут при пропускании газовой смеси, содержащей водяной пар, воздух и аммиак при мольном соотношении компонентов H2O:воздух: NH3=(0,25÷0,5):1:(0,05:0,12) и дополнительно осуществляют прокаливание при температуре 150-250°С в течение 1,5÷2,5 часов. [Патент RU 2402490 C1 C01G 9/03, опубл. в БИ №30, от 27.10.2010].

К недостаткам прототипа следует отнести недостаточно высокую удельную поверхность получаемого оксида цинка и необходимость очистки от аммиака выходящей газовоздушной смеси.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задачей изобретения является создание способа получения оксида цинка с высокой удельной поверхностью.

Поставленная задача решена в предлагаемом способе приготовления оксида цинка, включающем измельчение порошка металлического цинка, обработку реакционной смесью, содержащей аммиак, и прокаливание полученной массы, при этом в качестве реакционной смеси используют аммиачно-карбонатный раствор, обработку реакционной смесью ведут при массовом соотношении компонентов Zn:AKP=1:1÷2, а прокаливание полученного материала осуществляют при 240-310°С.

СВЕДЕНИЯ, ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Пример 1.

В качестве реакционной смеси использовали аммиачно-карбонатный раствор (АКР), полученный путем растворения карбоната аммония (NH4)2CO3 при температуре 60-80°С в 18%-ном водном растворе аммиака. Использовался АКР состава: 20% NH3, 12% CO2, вода - остальное.

В барабан вибрационной мельницы VM - 4 загружают 50 г порошка металлического цинка, 100 г аммиачно-карбонатного раствора (соотношение Zn:АКР=1:2) и измельчают в течение 30 минут при температуре 60°С. В процессе механохимического синтеза образуется смесь карбонатов и основных карбонатов цинка. Полученный продукт прокаливают при 310°С в течение 4 часов, при этом протекают реакции разложения с образованием целевого продукта - оксида цинка.

Пример 2.

В барабан вибрационной мельницы VM - 4 загружают 50 г порошка металлического цинка, 60 г аммиачно-карбонатного раствора (соотношение Zn:АКР=1:1,0) и измельчают в течение 30 минут при температуре 70°С. Далее полученную массу прокаливают в течение 4 часов при температуре 240°С.

Пример 3.

В барабан вибрационной мельницы VM - 4 загружают 50 г порошка металлического цинка, 75 г аммиачно-карбонатного раствора (соотношение Zn:АКР=1:1,5) и измельчают в течение 30 минут при температуре 70°С. Затем полученную массу прокаливают в течение 4 часов при температуре 280°С.

Удельную поверхность образцов определяли методом БЭТ по низкотемпературной адсорбции аргона [Киселев, А.В. Физико-химическое применение газовой хроматографии / А.В.Киселев, А.В.Иогансен, К.И.Сакодынский и др. - М.: Химия, 1973. - 256 с.], полученные данные приведены в таблице.

Таблица
№ п/п Пример Удельная поверхность, м2
1 1 40,1
2 9 38,2
3 3 40,7
4 Прототип 28,4

Из таблицы видно, что использование заявленного изобретения позволяет увеличить удельную поверхность оксида цинка по сравнению с прототипом на 34,4-43,3%.

Способ получения оксида цинка, включающий измельчение порошка металлического цинка, обработку реакционной смесью, содержащей аммиак, и прокаливание полученной массы, отличающийся тем, что в качестве реакционной смеси используют аммиачно-карбонатный раствор (АКР), обработку реакционной смесью ведут при массовом соотношении компонентов Zn:AKP=1:(1÷2), а прокаливание полученного материала осуществляют при 240-310°С.



 

Похожие патенты:
Изобретение относится к неорганической химии, а именно к способу получения соединений цинка и, в частности, к способу получения порошка оксида цинка. .

Изобретение относится к технологии получения оксида цинка, обедненного по изотопу Zn64, применяемого в качестве добавки в системах охлаждения ядерного реактора. .
Изобретение относится к получению тонкопленочных материалов, применяемых в светотехнической, строительной, электронной отраслях техники. .
Изобретение относится к получению оксида цинка, обедненного по изотопу Zn64, используемого в качестве добавки в системах охлаждения ядерного реактора. .

Изобретение относится к способам получения частиц нанометрового размера, которые находят применение в различных областях науки и техники, в частности, наночастицы оксидов металлов могут использоваться в медицине в качестве компонент оболочки микрокапсул для прецизионной доставки лекарств к больным органам.

Изобретение относится к химической промышленности и может быть использовано в строительстве, промышленности и косметической промышленности. .
Изобретение относится к светоустойчивым полимерным композициям. .

Изобретение относится к области кристаллографии и может быть использовано для получения малоразмерных порошков на основе оксида цинка, которые обеспечивают низкопороговую лазерную генерацию ультрафиолетового излучения при комнатной температуре.
Изобретение относится к области технологии неорганических материалов, в частности к очистке оксида цинка от примеси кремния. .
Изобретение относится к технологии получения обедненного по изотопу Zn64 оксида цинка, очищенного от примесей олова и кремния, который в настоящее время используется в качестве добавки в водный теплоноситель первого контура атомных реакторов

Изобретение относится к технологии опто- и микроэлектроники и может быть использовано для получения опалоподобных структур

Изобретение относится к способу получения оптических планарных волноводов в ниобате лития для интегральной и нелинейной оптики

Изобретение относится к технологии получения оксида цинка и может быть использовано для получения оксида цинка со смещенным изотопным составом. Способ включает получение гидроксида цинка из диэтилцинка, которое ведут в проточном реакторе в струе воды или водной пульпы, содержащей гидроксид цинка, с расходом диэтилцинка до 40 кг в час с получением пульпы, содержащей частицы гидроксида цинка. Пульпу подвергают сепарации для отделения от реакционных газов и повторно подают в реактор в качестве гидролизующего агента. После насыщения пульпы гидроксид цинка отделяют от воды отстаиванием. Гидроксид цинка сушат и разлагают до оксида цинка. Техническим результатом является безопасность процесса, которая достигается за счет моментального отвода тепла и продуктов реакции струей воды. 3 пр.

Изобретение относится к технологии получения неорганических ультрадисперсных материалов и может быть использовано в химической, металлургической, нефтехимической, электронной и медицинской областях промышленности. Способ получения ультрадисперсного оксида цинка включает взаимодействие крупнодисперсного оксида цинка с гидрокарбонатом аммония в водном растворе, отделение осадка основного карбоната цинка от водной фазы и его последующую термообработку с получением готового продукта. Реакцию крупнодисперсного оксида цинка с гидрокарбонатом аммония в водном растворе проводят при соотношении компонентов ZnO:NH4HCO3:H2O - 1:(0,6-0,8):(4,1-10,0) по массе. Термообработку основного карбоната цинка проводят в температурном интервале 200-400°С. Изобретение позволяет уменьшить расход крупнодисперсного оксида цинка на стадии получения основного карбоната цинка, снизить энергозатраты на стадии отделения промежуточного продукта - основного карбоната цинка от водной фазы, ограничить температурный интервал обработки основного карбоната цинка, а также сократить время проведения процесса и получить частицы ультрадисперсного оксида цинка с размером 10-15 нм. 2 ил., 3 табл., 4 пр.
Изобретение относится к области получения материалов с антибактериальными свойствами на основе тканей из волокна природного происхождения, содержащих неорганические антибактериальные агенты. В способе получения материала с антибактериальными свойствами хлопковую ткань модифицируют наночастицами оксида цинка в количестве 0,1-1,0 мг/см2 или 0,8-8 % вес. Модифицирование проводят путем многократного смачивания поверхности растянутой на игольчатых держателях хлопковой ткани дисперсией наночастиц оксида цинка в воде или этаноле с концентрацией 0,1-0,6 г/л, полученной методом лазерной абляции, с последующим высушиванием при температуре до 100°С. Размер наночастиц оксида цинка в дисперсии 5-100 нм, со средним значением 10-20 нм. Обеспечивается простой и недорогой способ получения материала с антибактериальными свойствами с заданным содержанием частиц оксида цинка на поверхности. 6 пр.
Изобретение относится к технологии утилизации отходов латуни, отработанных травильных растворов, отходов цинка и может быть использовано в машиностроении и гальванотехнике. Способ утилизации отходов латуни и отработанных травильных растворов заключается в том, что в емкость с отработанными травильными растворами вносят отходы латуни и выдерживают при периодическом перемешивании. После выдержки в емкость добавляют отходы цинка и выдерживают до достижения рН порядка 7. Далее отделяют осажденную на дне емкости медь, а в оставшийся в емкости раствор добавляют кальцинированную или каустическую соду, перемешивают и отстаивают до получения осадка в виде карбоната или гидроксида цинка, который отделяют от раствора. Техническим результатом изобретения является упрощение процесса утилизации отходов латуни, отработанных травильных растворов, а также отходов цинка и повышение его эффективности. 3 з.п. ф-лы, 3 пр.

Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему из водорастворимого полимера и фазообразующей соли металла или соли аммония. При этом образуются водно-полимерная и водно-солевая фазы. В одну из фаз добавляют водный раствор сульфата экстрагируемого металла, выбранного из меди или цинка. В другую фазу добавляют водный раствор гидроксида натрия или аммиака. После этого приготовленную гетерогенную систему с введенными добавками выдерживают при температуре 25-80°С и атмосферном давлении в течение 1-24 ч. Полученный в межфазном слое осадок выделяют, промывают дистиллированной водой и сушат на воздухе до прекращения изменения массы. Получают наноразмерные кристаллы оксидов меди или цинка. В качестве водорастворимого полимера используют полиэтиленоксид (полиэтиленгликоль) с молекулярной массой 1500-20000. В качестве фазообразующей соли металла используют сульфат металла, выбранного из ряда Na, Li, Cu, Zn, Mg, Cd, Co. В качестве соли аммония используют сульфат. Изобретение позволяет упростить получение нанокристаллов оксидов металлов без использования токсичных, горючих и взрывоопасных органических растворителей. 6 пр., 6 ил.

Изобретение может быть использовано в неорганической химии. Способ получения нанодисперсных оксидов металлов включает формирование реакционной смеси путем внесения нитратов металлов и карбамида в водную среду в стехиометрическом соотношении. На реакционную среду воздействуют микроволновым излучением. Реакционную смесь формируют непосредственно в реакционном объеме при следующем соотношении компонентов, мас. %: смесь нитрата и карбамида 10-20, вода - остальное. Воздействие микроволновым излучением осуществляют при открытом доступе к реакционной среде в реакционном объеме. Промежуточный продукт реакций подвергают сушке при температуре не менее 200°С. Высушенный продукт измельчают до размеров частиц не более 20 нм. В ходе измельчения высушенного продукта параллельно осуществляют гидрофобизационную обработку гидрофобизирующей смесью, состоящей из силанов и силиконовых олигомеров, взятых в соотношении, мас. %: силан 17-33, силиконовый олигомер 67-83. Изобретение позволяет обеспечить полную конверсию нитратов металлов в оксиды, обладающие пролонгированной устойчивостью к агломерации, повысить выход продуктов, исключить наличие следов исходных компонентов в продуктах. 3 з.п. ф-лы, 6 табл., 8 пр.

Настоящее изобретение касается аммиачных композиций, включающих в себя по меньшей мере одно гидроксоцинковое соединение и по меньшей мере два соединения элементов 3-й главной подгруппы. Указанная композиция может быть использована для изготовления электронных компонентов и для получения слоя, наносимого на подложку с последующей термической конверсией. Технический результат: получение слоев с необходимыми электрическими свойствами: высокой подвижностью электронов, благоприятным гистерезисом и отпирающим напряжением. 4 н. и 10 з.п. ф-лы, 1 табл., 3 пр.
Наверх