Способ получения полистирола

Авторы патента:

 


Владельцы патента RU 2456305:

ИНЕОС ЮРОУП ЛИМИТЕД (GB)

Настоящее изобретение относится к способу получения ударопрочного полистирола. Описан способ получения ударопрочного полистирола, который включает: 1) введение в пред-инверсионный реактор стирольного мономера, полимерного каучука и промотора прививки, и полимеризация стирольного мономера с получением полистирола, при том, что полимеризацию осуществляют до конверсии, составляющей от 70 до 100% от начальной точки инверсии фаз образовавшейся смеси стирол/полистирол/полимерный каучук; 2) разделение образовавшейся смеси стирол/полистирол/полимерный каучук с получением первого потока, включающего от 70 до 95 мас.% образовавшейся смеси, и второго потока, включающего остальную образовавшуюся смесь; 3) введение первого потока во второй реактор, в котором происходит дальнейшая полимеризация стирола, что вызывает инверсию фаз в первом потоке, где конверсия стирола более чем на 20% выше конечной точки инверсии фаз; 4) смешивание инвертированного по фазе первого потока, полученного на стадии (3), со вторым потоком, полученным на стадии (2), при скорости перемешивания от 5 до 30 с-1 в статическом поточном смесителе, чтобы вызвать вторую инверсию фаз и получить ударопрочный полистирол с бимодальным распределением частиц каучука. Технический результат - получение ударопрочного полистирола с бимодальным распределением частиц каучука. 2 з.п. ф-лы.

 

Настоящее изобретение представляет собой способ получения полистирола, конкретно ударопрочного полистирола.

Ударопрочный полистирол обычно получают введением полимерного каучука в полистирол. Полимерный каучук обычно присутствует во время формирования полистирола, обычный процесс включает подачу раствора полимерного каучука в стирол и полимеризацию мономерного стирола. Желательно, чтобы в процессе полимеризации происходило образование привитого сополимера полистирола и полимерного каучука. Скорость привитой сополимеризации (по сравнению с гомополимеризацией) зависит от температуры, обычно она повышается при добавлении катализатора или инициатора привитой сополимеризации.

Во время начальных стадий полимеризации в однородной фазе раствора каучукового полимера формируются глобулы полистирола. По мере протекания полимеризации фаза полистирола становится более однородной, что со временем приводит к образованию однородной фазы полистирола, в которой в виде глобул присутствует полимерный каучук. Фазовые изменения, приводящие к замене однородной фазы полимерного каучука на однородную фазу полистирола, известны как «инверсия фаз». Более подробное описание инверсии фаз можно найти в патенте US 4777210.

Регулирование процесса полимеризации, особенно во время инверсии фаз, воздействует на размер образующихся частиц полимера, что будет существенным образом влиять на свойства образующегося ударопрочного полистирола.

Так, в патенте US 4777210 описан способ получения ударопрочного полистирола, в котором исходная реакционная смесь реагирует в прединверсионном реакторе до момента, который близок к моменту начала инверсии фаз (стартовый момент инверсии фаз), а затем смесь переносят во второй реактор последовательности реакторов, в котором протекает инверсия фаз. Способом, описанным в патенте US 4777210, получают мономодальный ударопрочный полистирол, обладающий высокой воспроизводимостью размера частиц полимера.

Также известно, что бимодальные ударопрочные полистиролы могут обладать улучшенными свойствами по сравнению с мономодальными полистиролами. Такие полистиролы можно получать в процессе, в котором отдельно получают первый и второй полистиролы, имеющие различные размеры частиц, а затем смешивают указанные полистиролы, как описано, например, в патенте US 5240993. Однако такой способ требует применения по меньшей мере двух (очень хорошо регулируемых) параллельных реакторов инверсии фаз, в которых протекает соответствующая инверсия фаз. Если этот способ используется совместно с изобретением, описанным в патенте US 4777210, могут потребоваться три или даже четыре реактора (один или два для предварительной инверсии, в зависимости от того, происходит ли она также параллельно, и два последующих реактора инверсии фаз для раздельной инверсии фаз перед смешиванием).

Теперь найден улучшенный способ получения ударопрочного полистирола, в котором можно получать хорошо регулируемые и воспроизводимые бимодальные ударопрочные полистиролы с применением одного реактора пре-инверсии и одного реактора инверсии фаз.

Таким образом, настоящее изобретение обеспечивает способ получения бимодального ударопрочного полистирола, указанный способ включает:

1) введение в реактор предварительной инверсии мономерного стирола, полимерного каучука и промотора прививки, и полимеризацию мономерного стирола с получением полистирола, указанную полимеризацию осуществляют до достижения степени превращения, составляющей от 70 до 100% от стартовой точки инверсии фаз в полученной смеси стирол/полистирол/полимерный каучук;

2) разделение образовавшейся смеси стирол/полистирол/полимерный каучук с получением первого потока, включающего от 70 до 95 мас.% образовавшейся смеси, и второго потока, включающего остальную образовавшуюся смесь;

3) введение первого потока в реактор инверсии фаз, в котором осуществляется дальнейшая полимеризация стирола, что вызывает инверсию фаз в первом потоке;

4) смешивание инвертированного по фазе первого потока, полученного на стадии (3), со вторым потоком, полученным на стадии (2), при скорости перемешивания, составляющей от 5 до 30 с-1, в статическом поточном смесителе, что вызывает вторую инверсию фазы и приводит к получению ударопрочного полистирола с бимодальным распределением частиц каучука.

Способ по настоящему изобретению приводит к получению ударопрочного полистирола с бимодальным распределением частиц каучука. На стадии (3) во время инверсии фаз образуются относительно мелкие частицы каучука с узким распределением частиц по размеру, имеющие размер частиц менее 1,5 микрон, обычно в среднем примерно 0,5 микрон. Такие мелкие размеры частиц и узкое распределение частиц по размеру достигаются применением первого потока, который имеет состав, уже близкий к стартовой точке инверсии фаз. Этот поток включает высокое отношение каучуковой фазы к каучуку, изначально присутствующему в смеси, благодаря присутствию промотора прививки на стадии (1), и имеет относительно высокую вязкость, что позволяет достигать инверсии фаз на стадии (3) при относительно небольших временах смешивания. Условия реакции на стадии (3) обычно включают относительно высокие скорости перемешивания. Время реакции подходящим образом ограничивают так, что конверсия стирола ограничивается, но остается все же более чем примерно на 20% выше конечной точки инверсии фаз.

Когда этот поток на стадии (4) смешивают со вторым потоком, полученным на стадии (2), смешивание, наоборот, проводят с относительно низкой скоростью перемешивания, что позволяет получить довольно крупные частицы. Величину более крупных частиц можно регулировать в зависимости от требуемого конечного применения, но обычно она составляет по меньшей мере 2 микрона, например от 2 до 10 микрон. Например, для применения в качестве антибликовых/ударопрочных продуктов крупные частицы должны обладать размером от 2,5 до 5 микрон, если же продукт предполагается применять в изделиях, обладающих высокой устойчивостью к растрескиванию под воздействием окружающей среды (ESCR), предпочтительны более крупные частицы, обычно от 6 до 9 микрон.

В целом, на стадии (4) протекает незначительная дальнейшая конверсия мономера стирола, вторая инверсия фаз (во втором потоке) протекает как следствие общего состава потока, содержащего избыток полистирола по сравнению с конечной точкой инверсии фаз (что является следствием того, что второй поток имеет состав, близкий к стартовой точке инверсии фаз, и его смешивают с потоком гораздо большего объема, который обладает составом, далеким от конечной точки инверсии фаз). Вторую инверсию фаз осуществляют в статическом поточном смесителе, что обеспечивает хорошо регулируемую инверсию фаз без осложнений (и затрат), связанных с применением второго реактора инверсии фаз.

Реакция на стадии (1) представляет собой реакцию пред-инверсии.

Подходящие для применения мономеры стирола, полимерные каучуки и промоторы прививки известны лицам, квалифицированным в данной области техники, и описаны, например, в патенте US 5240993.

Предпочтительными мономерами стирола являются сам стирол, альфа-метилстирол и замещенные в кольцо стиролы. Полимеризация стирола может представлять собой сополимеризацию стирола с по меньшей мере одним сомономером, выбранным из винилароматических мономеров, отличающихся от стирола, например, из альфа-метилстирола, стирола, содержащего галогеновые заместители в ароматическом кольце, и стирола, содержащего алкильные заместители в ароматическом кольце.

Предпочтительными полимерными каучуками являются натуральный каучук, стирол-бутадиеновый каучук, полибутадиен и полиизопрен. Предпочтительным полимерным каучуком является полибутадиен.

Предпочтительные промоторы прививки выбирают конкретно из пероксидов, гидропероксидов, пероксикарбонатов, перацеталей, перэфиров и азо-соединений. Пероксиды, например, трет-бутилперокси-2-этилгексаноат (ТБПЭ) и трет-бутилпербензоат (ТБПБ) являются наиболее предпочтительными.

Могут также присутствовать другие компоненты. Например, может присутствовать растворитель или разбавитель реакционной смеси, обычно его выбирают из бензола и алкилбензолов (или алкилированных производных бензола), конкретно выбирают из толуола, этилбензола, орто-ксилола, мета-ксилола, пара-ксилола и кумола. В качестве (не ограничивающих сферу данного изобретения) примеров подходящих добавок, раствор может также включать одну или более добавок выбранных из: ингибиторов роста цепи, например меркаптанов или димера альфа-метилстирола, пластификаторов и антиоксидантов.

Реактор предварительной инверсии предпочтительно представляет собой реактор обратного смешивания, например циркуляционный реактор обратного смешивания, или, более предпочтительно, проточный реактор с мешалкой (ПРМ).

Обычно отношение стирола к полимерному каучуку перед полимеризацией на стадии (1) составляет от 85:15 до 98:2 (по массе).

Температура в реакторе предварительной инверсии обычно достаточно низкая (по отношению к температуре на стадии (3)). Более низкие температуры благоприятствуют лучшей прививке полимерного каучука и полистирола, хотя слишком низкие температуры снижают скорость реакции слишком сильно. Предпочтительная температура на стадии (1) обычно составляет от 80 до 120°С, более предпочтительно от 80 до 110°С.

Конверсия стирола, составляющая от 70 до 100% начальной точки инверсии фаз, будет меняться в зависимости от используемого стирольного мономера и полимерного каучука, но обычно точка начала инверсии соответствует составу, в котором отношение полистирола к полимерному каучуку составляет примерно 1:1.

На стадии (3) протекает первая инверсия фаз. Как сказано выше, условием осуществления стадии (3) является относительно высокая скорость перемешивания, но время смешивания подходящим образом ограничивают, так что конверсия стирола ограничивается, но все еще составляет больше, чем примерно на 20% выше конечной точки инверсии фаз.

Реактор инверсии фаз предпочтительно представляет собой реактор обратного смешивания, например циркуляционный реактор обратного смешивания, или, более предпочтительно, проточный реактор с мешалкой (ПРМ).

Температура в реакторе инверсии фаз обычно выше, чем в реакторе предварительной инверсии, и обычно составляет от 100 до 130°С.

Скорость перемешивания обычно составляет от 20 до 50 с-1, предпочтительно от 20 до 40 с-1, и должна быть выше, чем скорость перемешивания на последующей стадии (4).

Конверсия предпочтительно увеличивается по меньшей мере до величины на 20% выше конечной точки инверсии фаз, например, в интервале от 20 до 50% выше. Конверсия обычно соответствует конверсии стирола от 15 до 40% (в зависимости от соотношения между стиролом и полимером в исходном потоке) и приводит к получению состава, в котором соотношение полистирола к полимерному каучуку составляет по меньшей мере 2:1.

Требуемая конверсия обычно достигается снижением времени реакции ниже 2 минут, например, чтобы оно составляло от 0,5 до 2 минут.

На стадии (4) протекает вторая инверсия фаз. На стадии (4) применяют статический проточный смеситель, что обеспечивает значительно более простой процесс по сравнению с применением второго «обычного» реактора инверсии фаз. Конкретно, инверсия фаз «регулируется» составами соответствующих потоков и скоростью перемешивания от 5 до 30 с-1. На стадии (4) не требуется дополнительной подачи тепла, температура на стадии (4) определяется температурами соответствующих смешивающихся потоков. Температура обычно составляет мене 120°С, например от 110 до 120°С. Время пребывания в реакторе на стадии (4) обычно составляет менее 2 минут, например от 0,5 до 2 минут.

После стадии (4) ударопрочный полистирол с бимодальным распределением частиц каучука будет находиться все еще в виде смеси стирол/полистирол/полимерный каучук. Полагают, что размер частиц определяется стадиями инверсии, а последующая обработка не будет значительно воздействовать на этот размер. Следовательно, можно применять «обычные» стадии обработки, включая дальнейшую конверсию стирола (обычно до конверсии, в общем составляющей по меньшей мере 80%) и удаления летучих продуктов. Такие стадии процесса описаны, например, в патентах US 4777210 и 5240993. Предпочтительно дальнейшую конверсию стирола осуществляют в серии из нескольких реакторов, причем перемешивание, применяемое на этой стадии, менее интенсивное, чем применяемое на стадии (4), предпочтительно скорость перемешивания составляет менее 5 с-1, более предпочтительно менее 1 с-1. Предпочтительно удаление летучих продуктов осуществляют в наборе из по крайней мере из двух стадий, в которых последовательно применяют более высокие температуры нагревания и более глубокий вакуум. Предпочтительные процессы и аппараты описаны в WO 2004/020482.

Еще одно преимущество настоящего изобретения состоит в том, что его можно осуществлять в приборе, который обычно применяют для получения мономодального полистирола, и который описан, например, в патенте US 4777210, при относительно небольших модификациях, которые состоят в добавлении средства отделения части предварительно инвертированного потока (от 5 до 30%) и статического поточного смесителя, предназначенного для перемешивания отделенной порции с продуктом из реактора инверсии фаз. В соответствии с этим прибор, используемый в способе по настоящему изобретению, можно легко переключить на получение мономодального полистирола, просто прекратив отделять второй поток на стадии (2). В этом случае весь предварительно инвертированный поток подвергается последующей инверсии фаз в реакторе инверсии фаз с получением мономодального полистирола, как описано в патенте US 4777210.

1. Способ получения ударопрочного полистирола, который включает:
1) введение в прединверсионный реактор стирольного мономера, полимерного каучука и промотора прививки, и полимеризация стирольного мономера с получением полистирола, при том, что полимеризацию осуществляют до конверсии, составляющей от 70 до 100% от начальной точки инверсии фаз образовавшейся смеси стирол/полистирол/полимерный каучук;
2) разделение образовавшейся смеси стирол/полистирол/полимерный каучук с получением первого потока, включающего от 70 до 95 мас.% образовавшейся смеси, и второго потока, включающего остальную образовавшуюся смесь;
3) введение первого потока во второй реактор, в котором происходит дальнейшая полимеризация стирола, что вызывает инверсию фаз в первом потоке, где конверсия стирола более чем на 20% выше конечной точки инверсии фаз;
4) смешивание инвертированного по фазе первого потока, полученного на стадии (3), со вторым потоком, полученным на стадии (2), при скорости перемешивания от 5 до 30 с-1 в статическом поточном смесителе, чтобы вызвать вторую инверсию фаз и получить ударопрочный полистирол с бимодальным распределением частиц каучука.

2. Способ по п.1, в котором на стадии (3) образуются частицы каучука, которые имеют размеры менее 1,5 мкм.

3. Способ по п.1 или 2, в котором на стадии (4) образуются частицы каучука, имеющие размеры от 2 до 10 мкм.



 

Похожие патенты:

Изобретение относится к способу получения латекса и термопластичной смолы, полученной из графт-сополимера на основе латекса. .
Изобретение относится к производству полимеров на основе стирола, а именно к получению ударопрочного полистирола (УП) путем полимеризации стирола в присутствии эластомера (каучука).
Изобретение относится к ударопрочным моновинилиденароматическим полимерам, модифицированным диеновыми каучуками. .

Изобретение относится к производству пластмасс, а именно к периодическим и непрерывным способам производства полистирола, в том числе и ударопрочного, путем радикально-цепной полимеризации в массе, или в суспензии.
Изобретение относится к химии высокомолекулярных соединений и касается способа получения привитых сополимеров метилметакрилата (ММА) на полиизопрене (ПИ), которые могут быть использованы в химической промышленности при получении материалов, сочетающих в себе свойства термоэластичных и термопластических полимеров

Изобретение относится к полунепрерывному объединенному способу производства ударопрочных винилароматических (со)полимеров посредством последовательной анионной/радикальной полимеризации
Изобретение относится к химии высокомолекулярных соединений и касается способа получения привитых сополимеров (СПЛ) стирола на полидиенах (ПД), которые могут быть использованы в химической промышленности при получении материалов, сочетающих в себе свойства термоэластичных и термопластических полимеров

Изобретение относится к амфифильному полимерному материалу, который имеет прямую или разветвленную главную цепь полимера и множество боковых цепей

Изобретение относится к полимерам, которые пригодны для использования в получении резиновых изделий, например, таких как протекторы покрышек

Изобретение относится к способу получения функционального полимера. Полимер содержит один или несколько типов полиеновых мономерных фрагментов и по меньшей мере одно функционализующее звено, которое содержит арильную группу, имеющую по меньшей мере одну непосредственно связанную группу OR, где R представляет собой гидролизуемую защитную группу. Способ включает: а) получение раствора, содержащего инициирующее соединение и этиленненасыщенные мономеры, которые содержат по меньшей мере один тип полиена, по меньшей мере один тип C8-С20 винилароматического соединения и этиленненасыщенное соединение, представленное формулой CH2=CHR1, где R1 является арильной группой, имеющей по меньшей мере один заместитель OR, где R представляет собой гидролизуемую защитную группу; и b) обеспечение анионного инициирования упомянутым инициирующим соединением полимеризации упомянутых этиленненасыщенных мономеров для получения карбанионного полимера. По меньшей мере одно функционализующее звено получают из упомянутого мономера, содержащего группу R1. Технический результат - получение функциональных полимеров, улучшающих степень взаимодействия с наполнителями. 2 н. и 14 з.п. ф-лы, 19 табл., 87 пр.

Настоящее изобретение относится к способу синтеза смесей наночастиц и жидкого полимера в одной полимеризационной реакционной емкости. Описан способ получения в растворителе синтезируемой в одном реакторе смеси наночастиц и жидкого полимера, при этом способ содержит стадии: (a) проведения в реакционной емкости либо полимеризации первого мономера до получения жидкого полимера, либо сополимеризации первого мономера и второго мономера до получения жидкого полимера, где первый мономер выбирают из группы, состоящей из С4-С8 сопряженных диенов и их смесей, а второй мономер выбирают из группы, состоящей из стирола, α-метилстирола, 1-винилнафталина, 2-винилнафталина, 1-α-метилвинилнафталина, 2-α-метилвинилнафталина, винилтолуола, метоксистирола, трет-бутоксистирола и их алкильных, циклоалкильных, арильных, алкарильных и аралкильных производных, у которых совокупное количество атомов углерода в производном является не большим чем 18, или любых ди- или тризамещенных ароматических углеводородов и их смесей; (b) частичного обрыва полимеризации при использовании агента гашения активных центров; и (с) добавления полифункционального сомономера, моновинилароматического мономера и необязательной загрузки инициатора полимеризации; где упомянутые наночастицы имеют ядро, включающее моновинилароматический мономер, и оболочку, включающую первый мономер или первый и второй мономер, при этом наночастицы образуются в результате самоагрегирования в мицеллы и сшивания мицелл полифункциональным сомономером. Также описан способ получения каучуковой композиции, при этом способ включает: получение указанной выше смеси наночастиц и жидкого полимера и добавление смеси к каучуковой композиции. Описан способ изготовления покрышки при использовании наночастиц и жидкого полимера, при этом способ включает: получение указанной выше смеси наночастиц и жидкого полимера; добавление смеси к каучуковой композиции; формование из каучуковой композиции протектора покрышки; и конструирование покрышки при использовании данного протектора покрышки. Описана композиция веществ для использования в каучуковой композиции, полученная в соответствии с указанным выше способом, по существу состоящая из: мицеллярных наночастиц, относящихся к типу «ядро-оболочка», где наночастицы образованы в результате самоагрегирования в мицеллы и сшивания мицелл полифункциональным сомономером; и жидкого полимера, характеризующегося значением Mw в диапазоне от приблизительно 10000 до приблизительно 120000; где наночастицы диспергированы и перемешаны внутри жидкого полимера. Технический результат - упрощение способа получения смеси наночастиц и жидкого полимера и их дальнейшей переработки. 4 н. и 18 з.п. ф-лы, 2 ил., 4 табл., 7 пр.

Изобретение относится к усиленному каучуком винилароматическому (со) полимеру, способу его получения и применению такого полимера. Винилароматический (со) полимер, усиленный каучуком, содержит полимерную матрицу и фазу каучука, состоящую из диенового каучука, диспергированного и/или привитого к полимерной матрице. Указанную фазу каучука выбирают из по меньшей мере одного каучука из: (i) линейного диенового каучука состоящего из полибутадиена с вязкостью раствора от 40 до 70 сП, измеренной в растворе этого каучука в количестве 5 мас.% в стироле при температуре 25°C; содержанием 1,2-винила от 5 до 35 мас.% и содержанием 1,4-цис звеньев от 20 до 85 мас.%: (ii) диенового каучука частично радиальной структуры с вязкостью раствора менее 70 сП, в котором на конце до 15 мас.%. предпочтительно от 1 до 12 мас.% полимерных цепей присоединен чегырехфункциональный связующий агент, чтобы образовать радиальную концевую структуру цепей линейного диенового каучука; (iii) трехцепочечного диенового каучука с вязкостью раствора менее 70 сП, т.е. линейного диенового каучука, состоящего из полибутадисна, с вязкостью раствора от 40 до 70 сП, измеренной в растворе этого каучука в количестве 5 мас.% в стироле при температуре 25°C; содержанием 1,2 винила от 5 до 35 мас.% и содержанием 1,4-цис звеньев от 20 до 85 мас.%, соединенного с трехфункциональным связующим агентом; (iv) смеси линейных диеновых каучуков (i) и диеновых каучуков (v) радиальной структуры при максимальном отношении между ними (i)/(v) от 99.5/0,5 до 85/15 с вязкостью раствора менее 70 сП. Технический результат - получение винилароматических (со)полимеров, усиленных каучуком для изготовления изделий с высоким блеском и механическими свойствами. 3 н. и 4 з.п. ф-лы, 1 табл., 10 пр.

Изобретение касается улучшенной композиции для производства винилароматических полимеров, модифицированных каучуком, где существенное улучшение ударной прочности конечного продукта вызывается включением модифицирующей структуру добавки на различных стадиях полимеризации, предпочтительно во время состояния совместной непрерывности фаз и, в особенности, на интервале обращения фаз. Добавкой является соединение формулы: в которой каждый из R1, R3 означает насыщенную или ненасыщенную цепь из C1-C18, где R1 и R3 являются одинаковыми или отличными друг от друга, каждый из R2, R4, R5 означает водород, галоген или карбонизованную цепь из C1-C18, где R2, R4, R5 являются одинаковыми или отличными друг от друга, R6 означает группу С2Н4, n означает целое число, равное или больше 1. 12 з.п. ф-лы, 7 ил., 2 табл., 3 пр.
Наверх