Устройство проверки электросчетчиков активной энергии

Изобретение относится к электротехнике и может быть использовано при разработке электросчетчиков активной энергии. Заявлено устройство проверки электросчетчиков активной энергии индукционного типа, содержащее рабочий конденсатор, заряжаемый от электрической сети через высокочастотный коммутатор и разряжаемый обратно в сеть непосредственно, емкость которого выбирают из расчета безучетно потребляемой мощности. При этом рабочий конденсатор одним из его полюсов подключен к фазному и нулевому проводникам электросети через управляемые попеременно силовые транзисторы, а другим - через коммутирующие попеременно симисторы, параллельно которым включены фильтрующие конденсаторы. Кроме того, в разрядных цепях рабочего конденсатора использованы два дополнительных коммутирующих симистора, а попеременное включение всех силовых транзисторов и симисторов осуществлено подключенным к ним блоком управления, работа которого синхронизирована сигналом электрической сети. Технический результат - оценка защищенности электросчетчиков активной энергии от возможности ее неконтролируемого хищения. 2 ил.

 

Изобретение относится к электротехнике и может быть использовано при разработке электросчетчиков активной энергии.

Общее потребление электроэнергии в 2010 году составило около одного триллиона кВт·час. Статистический анализ показал, что не менее 10 процентов генерируемой и поставляемой пользователям энергии ими похищается, что составляет коммерческие потери. Известны различные способы борьбы с хищениями электроэнергии бытовыми потребителями [1-2] в сельской местности, пригородных домах и садоводствах путем переброса фазного и нулевого проводников ввода, подсоединяемого к ответвлению от ВЛ - 0,4 кВ, и при использовании скрытого заземляющего устройства. Эти способы создают экономию не менее 30 миллиардов рублей ежегодно. Промышленность разработала новые электросчетчики с двумя токовыми измерительными цепями (например, типа СЕ-200), использование которых нечувствительно к указанному перебросу проводников ввода. Такие электросчетчики устанавливают в городах и в новостройках. Однако работа таких электросчетчиков может быть нарушена применением простых электрических схем [3-4], предназначенных для проверки токовой чувствительности электросчетчиков, при использовании скрытого заземляющего устройства. Это еще больше увеличит масштабы хищения электроэнергии, особенно в связи с постоянным ростом тарифов на нее.

Меры противодействия хищению электроэнергии, предпринимаемые Гостехнадзором и местными отделениями Энергосбыта, оказываются недостаточными, и тенденция роста хищений электроэнергии требует помимо усиления контрольных функций создания приборов учета электроэнергии принципиально иной конструкции [5] что приводит, в частности, к отказу от использования в них индукционных измерителей тока, поскольку разработаны электронные схемы остановки или замедления работы индукционных приборов учета, которые не требуют использования скрытого заземляющего устройства, при этом пломбировка, прочное закрепление и целостность элементов электросчетчика не нарушаются потребителями. Такие устройства являются полностью автономными и просто включаются в розетку электрической сети.

Для проверки работы электросчетчиков нового типа, включая и электросчетчики индукционного типа, которыми оснащены 100% бытовых потребителей в стране, необходимо разработать устройство-тренажер. Решению этой задачи посвящено заявляемое техническое решение, вариацией параметров которого можно определить степень уязвимости действующих и вновь разрабатываемых приборов учета электроэнергии.

Целью изобретения является оценка защищенности электросчетчиков активной энергии от возможности ее неконтролируемого хищения.

Указанная цель достигается в заявляемом устройстве проверки электросчетчиков активной энергии индукционного типа, содержащем рабочий конденсатор, заряжаемый от электрической сети через высокочастотный коммутатор и разряжаемый обратно в сеть непосредственно, емкость которого выбирают из расчета безучетно потребляемой мощности, отличающимся тем, что рабочий конденсатор одним из его полюсов подключен к фазному и нулевому проводникам электросети через управляемые попеременно силовые транзисторы, а другим - через коммутирующие попеременно симисторы, параллельно которым включены фильтрующие конденсаторы, кроме того, в разрядных цепях рабочего конденсатора использованы два дополнительных коммутирующих симистора, а попеременное включение всех силовых транзисторов и симисторов осуществлено подключенным к ним блоком управления, работа которого синхронизирована сигналом электрической сети.

Достижение цели изобретения объясняется снижением учета электроэнергии индукционным прибором учета в нечетные четверти периодов сетевого напряжения при соответствующем подборе частоты в высокочастотном импульсном генераторе, быстро прерывающем зарядный ток в рабочем конденсаторе, и возвратом в сеть накопленной электроэнергии от него без модуляции разрядного тока, что либо останавливает работу прибора учета, либо уменьшает его показания в зависимости от величины присоединенной нагрузки и от величины емкости рабочего конденсатора.

Изобретение понятно из представленных рисунков.

На рис.1 дана электрическая схема зарядно-разрядной цепи рабочего конденсатора под управлением с блока управления, состоящая из:

БУ - блока управления,

T1 и Т2 - первого и второго силовых транзисторов цепей заряда,

С1 - рабочего конденсатора, определяющего энергетику устройства,

D1…D4 - симисторов зарядных и разрядных цепей рабочего конденсатора C1,

С2 и С3 - фильтрующих конденсаторов, установленных параллельно симисторам зарядных цепей рабочего конденсатора.

Выводы блока управления, подключенного к сети, и связанные с ними выводы управляющих цепей силовых транзисторов и симисторов обозначены цифрами от 1 до 8.

На рис.2 представлена функциональная схема блока управления БУ (рис.1), содержащая фазосдвигающую цепь из двух конденсаторов С и резисторов R, один из которых подстраиваемый, обеспечивающую сдвиг фазы входного переменного напряжения сети на π/2, два усилителя-ограничителя, два инвертора, шесть схем совпадений, высокочастотный импульсный генератор (ВИМ) с регулируемой частотой следования импульсов, шесть разделительных конденсаторов и шесть токовых ключей, используемых для попеременного открывания-запирания силовых транзисторов и симисторов в схеме на рис.1. В этой схеме не показаны раздельные источники питания токовых ключей с их общими точками-выводами 4 и 5, а также источник питания ВИГ, усилителей-ограничителей, выполненных на операционных усилителях, и логических элементов - инверторов и схем совпадения, например, на ТТЛ-логике. Эти блоки питания подключены к сетевому напряжению. Каждая из пары последовательно включенных RC-цепочек создает сдвиг фазы входного напряжения на 45°. Подстройка резистора в одной из них позволяет уточнить полный сдвиг фазы на 90°. При этом на вход первого усилителя-ограничителя воздействует сигнал u(t)1=ηU0sin2πFt, а на вход второго - сигнал u(t)2=ηU0cos2πFt, где U0 и F - амплитуда и частота сетевого напряжения, η<<1 - коэффициент деления сетевого напряжения (активный делитель напряжения сети не представлен на схеме). В качестве делителя может быть использован микромощный понижающий трансформатор.

Рассмотрим действие заявляемого устройства.

Оно работает в четыре циклически повторяющихся этапа, суммарная длительность которых равна периоду сетевого напряжения Т.

На первом этапе 0≤t≤Т/4 рабочий конденсатор C1 заряжается по цепи «первый силовой транзистор T1 - симистор D4». При этом симистор D4 открыт по сигналу с вывода 8 с выхода БУ, а силовой транзистор T1 прерывает цепь заряда высокочастотным сигналом той или иной частоты f, поступающим с вывода 1 БУ. Модуляция тока заряда приводит к сниженному учету потребленной рабочим конденсатором энергии из-за свойств индукционной измерительной токовой цепи электросчетчика активной энергии. На рабочем конденсаторе формируется заряд с энергией W=C1U02/2, где U0 - амплитудное значение напряжения сети, равное 310В при эффективном напряжении 220 В. Как показывает анализ, за счет использования модуляции зарядного тока высокочастотным сигналом учет энергии W электросчетчиком составляет всего 20…30% этой величины в зависимости от выбранного значения частоты прерываний зарядного тока, определяемой работой высокочастотного импульсного генератора 9 (рис.2). Отметим, что параллельное подключение фильтрующего конденсатора С3 к симистору D4 приводит к поддержанию этого симистора открытым на этапе заряда рабочего конденсатора C1.

На втором этапе Т/4≤t≤Т/2 рабочий конденсатор C1 разряжается по цепи «симистор D1 - симистор D4». При этом закрыт ранее открытый первый силовой транзистор T1. При этом на симистор D4 продолжает действовать управляющий сигнал с вывода 8 БУ, длительность которого равна Т/2, а на симистор D1 - сигнал управления с вывода 2 БУ длительностью Т/4. Энергия заряда W передается обратно в сеть, и при этом индукционный прибор учета электроэнергии работает исправно, на 100%, так как разрядный ток не модулирован высокочастотными импульсами с ВИГ.

На третьем этапе Т/2≤t≤3Т/4 рабочий конденсатор C1 вновь заряжается по цепи «второй силовой транзистор Т2 - симистор D2» во второй полуволне периода сетевого напряжения. Ток заряда также является прерывающимся за счет его модуляции сигналом с ВИГ, что приводит к неправильному учету энергии W электросчетчиком. Сигнал управления на силовой транзистор Т2 поступает с вывода 6 БУ. На симистор D2 действует управляющий сигнал с вывода 3 БУ. Фильтрующий конденсатор С2, включенный параллельно симистору D2, выполняет те же функции, что и фильтрующий конденсатор С3.

На четвертом этапе 3Т/4≤t≤Т рабочий конденсатор C1 разряжается через полностью открытые симисторы D2 и D3. На управляющие входы этих симисторов действуют управляющие сигналы соответственно с выводов 3 и 7 БУ. При этом второй силовой транзистор Т2 закрыт.

Разделительные конденсаторы Ср передают с логических схем формирования управляющих сигналов переменную составляющую логических нулей и единиц, но отделяют токовые ключи от логической схемы по постоянным составляющим, поскольку низковольтные источники питания логической схемы устройства заземлены, а два раздельных незаземленных источника питания шести токовых ключей «подвешены» относительно заземления (нулевого проводника сети). При этом токовые ключи, образующие выводы 1, 2, 6 и 7 БУ, имеют общую точку их источника питания с выводом 4 БУ, а токовые ключи с выводами 2 и 7 имеют общую точку другого их источника питания с выводом 5 БУ.

Токовые ключи вырабатывают сигналы управления для включения силовых транзисторов и симисторов (рис.1) необходимой мощности, зависящей от типов применяемых силовых транзисторов T1 и Т2 и симисторов D1…D4, а также в зависимости от коммутируемой ими мощности, определяемой емкостью рабочего конденсатора C1.

Высокочастотный импульсный генератор (ВИГ) содержит перестраиваемый по частоте, например, в диапазоне 1…20 кГц RC генератор и формирователь ТТЛ-импульсов в форме «меандра», которые модулируются ТТЛ-импульсами длительностями Т/4, соответствующими первой и третьей четвертями в каждом периоде сетевого напряжения.

В последующих периодах процессы заряда и разряда рабочего конденсатора C1 повторяются с частотой 2F, где F - частота сетевого напряжения (F=50 Гц).

Если частоту прерываний заряда f>>F выбрать так, что учет энергии при заряде составляет, например, 0,25 W, а обратный учет равен W, то мощность обратного учета электроэнергии таким прибором учета будет равна Р=0,75 W F.

Рассмотрим пример. Пусть C1=500 мкФ, F=50 Гц, U0=310 В. Тогда мощность обратного учета электроэнергии составит P=0,75*5*10-4*3102*50=1802 Вт. Рабочий конденсатор C1 должен быть рассчитан на рабочее напряжение 400 В и допускать работу в частотном режиме заряда. Частота f высокочастотного импульсного генератора 9 имеет порядок от 1 кГц до 20 кГц и подбирается в зависимости от конструкции индукционной токовой измерительной цепи электросчетчика по максимуму величины мощности Р. Емкость фильтрующих конденсаторов C2 и С3 выбирают меньше емкости C1 в кратное число раз k от величины отношения f/F. Если f=10 кГц, k=3, то С23=3*500*50/10000=7,5 мкФ. Эти конденсаторы также рассчитывают на рабочее напряжение 400 В, и они должны допускать работу в частотном режиме (при f=10…20 кГц).

Выполнение данного устройства только на управляемых симисторах нежелательно, поскольку сильноточные симисторы работают надежно только в низкочастотном диапазоне колебаний. Поэтому было принято решение использовать в качестве управляемых высокочастотными импульсами коммутаторов зарядных цепей именно силовые транзисторы n-p-n типа с обратным напряжением на коллекторе не менее 800 В. Поскольку силовые транзисторы и симисторы работают в ключевом режиме, мощность рассеяния на них мала даже при больших значениях мощности Р [6-8]. С учетом того, что заряд рабочего конденсатора C1 однополярный (без перезаряда), можно использовать малогабаритные электролитические (танталовые) конденсаторы. Это существенно снижает вес и габариты устройства.

Целесообразно обойтись в будущем без индукционных приборов учета активной энергии и применять счетчики полной энергии (активной и реактивной).

Литература

1. Меньших О.Ф. Способ борьбы с хищениями электроэнергии, патент РФ №2208795, опубл. в бюл. №20 от 20.07.2003.

2. Меньших О.Ф. Способ борьбы с хищениями электроэнергии (способ Меньших), патент РФ №2308726, опубл. в бюл. №29 от 20.10.2007.

3. Меньших О.Ф. Устройство для проверки чувствительности электронного электросчетчика с двумя токовыми цепями с активной нагрузкой и реактивной компенсацией, патент №2338217, опубл. в бюл. №31 от 10.11.2008.

4. Меньших О.Ф. Способ проверки работоспособности электронного счетчика электроэнергии с двумя токовыми измерительными цепями и схема его осуществления, патент РФ №2344428, опубл. в бюл. №02 от 20.01.2009.

5. Жежеленко И.В. Показатели качества электроэнергии и их контроль на промышленных предприятиях, - 2-е изд., М., Энергоатомиздат, 1986.

6. Блихер А. Физика тиристоров, пер. с англ., Л., 1981;

7. Евсеев Ю.А., Дерменжи П.Г. Силовые полупроводниковые приборы, М., 1981.

8. Тучкевич В.М., Грехов И.В. Новые принципы коммутации больших мощностей полупроводниковыми приборами. Л., 1988.

Устройство проверки электросчетчиков активной энергии индукционного типа, содержащее рабочий конденсатор, заряжаемый от электрической сети через высокочастотный коммутатор и разряжаемый обратно в сеть непосредственно, емкость которого выбирают из расчета безучетно потребляемой мощности, отличающееся тем, что рабочий конденсатор одним из его полюсов подключен к фазному и нулевому проводникам электросети через управляемые попеременно силовые транзисторы, а другим - через коммутирующие попеременно симисторы, параллельно которым включены фильтрующие конденсаторы, кроме того, в разрядных цепях рабочего конденсатора использованы два дополнительных коммутирующих симистора, а попеременное включение всех силовых транзисторов и симисторов осуществлено подключенным к ним блоком управления, работа которого синхронизирована сигналом электрической сети.



 

Похожие патенты:

Изобретение относится к области приборостроения и может найти применение в системах формирования защитных отключений электроэнергии. .

Изобретение относится к области измерительной техники и может найти применение для поверки электронных электросчетчиков электроэнергии. .

Изобретение относится к измерительной технике и может быть использовано для предотвращения преднамеренного нарушения работы однофазного счетчика электроэнергии.

Изобретение относится к измерительной технике и может быть использовано для предотвращения преднамеренного нарушения работы счетчика электроэнергии в однофазных сетях: остановки счетчика электроэнергии или уменьшения его показаний.

Изобретение относится к области электроэнергетики, в частности к средствам контроля и учета расхода электроэнергии, и может быть применено в коллективных и индивидуальных системах учета и контроля.
Изобретение относится к области электротехники и может быть использовано в народном хозяйстве при потреблении электроэнергии от электросетей преимущественно абонентами в домах индивидуальной застройки (в сельской местности, в поселках городского типа, в садоводствах и т.д.).

Изобретение относится к измерительной технике и может быть использовано для защиты от хищения электрической энергии в двухпроводных электрических сетях. .

Изобретение относится к области электроизмерительной техники, в частности к области учета потребления электроэнергии и обнаружения фактов ее хищения, и может быть использовано для определения фактов временного несанкционированного подключения потребителей электроэнергии к линиям электроосвещения.

Изобретение относится к измерительной технике приборостроения, а именно к технике определения неконтролируемого потребления электроэнергии. .

Изобретение относится к средствам измерительной техники и может быть использовано при разработке и исследовании однофазных индукционных электросчетчиков, в частности, на чувствительность к высокочастотным составляющим тока в нагрузках

Изобретение относится к области электротехники и может быть использовано при испытаниях однофазных индукционных электросчетчиков, в частности, при проверке погрешности отсчета расходуемой электроэнергии при прерывании рабочего тока на повышенной частоте, во много раз превышающей частоту энергоснабжающей сети

Изобретение относится к области электротехники и может быть использовано при проверке индукционных приборов учета электроэнергии. Устройство для проверки индукционных электросчетчиков состоит из параллельно подключенных между собой первой и второй групп из тиристора, диода и транзистора, проводники со стороны катода тиристора, анода диода и коллектора транзистора n-р-n-типа в каждой группе подключены к выводам вилки, подключаемой к розетке потребителя электроэнергии, а накопительный конденсатор соединен между эмиттерными цепями транзисторов первой и второй групп, при этом управляющие переходы последних трансформаторно связаны с высокочастотным импульсным генератором с регулируемой частотой, а тиристоры открываются поочередно в начале второй и четвертой четвертей периода сетевого напряжения соответственно для тиристоров второй и первой групп с помощью блока управления, синхронизируемого сетевым напряжением. Технический результат заключается в возможности установления частоты модулирующих колебаний, при которой отмотка показаний максимальна при заданной емкости накопительного конденсатора. 1 з.п. ф-лы, 5 ил.

Настоящее изобретение относится к области электроизмерительной техники для учета и контроля расхода объема электропотребления трехфазной электрической сети, а именно к многофункциональным многотарифным приборам учета электрической энергии, устанавливаемым без снятия напряжения и монтажа, предназначенным для технического и коммерческого учета потребленной электрической энергии, мощности, а также для контроля параметров электрической энергии в течение времени. Мобильное устройство контроля за учетом электрической энергии, содержащее клеммную колодку, соединяющую блок датчиков напряжения и блок питания с зажимными устройствами, подключенными к питающей сети, микроконтроллер, подключенный через аналого-цифровой преобразователь к блоку датчиков напряжения и соединенный с энергонезависимой памятью, интерфейсом RS-485, жидкокристаллическим дисплеем, индикатором LED, оптическим портом, резервным источником питания текущего времени встроенных в микроконтроллер часов и блоком питания. Отличие устройства состоит в том, что к аналого-цифровому преобразователю дополнительно подключен блок автоматической коммутации пределов измерения, получающий сигнал от токовых клещей, снимающих параметры с питающей цепи, снабженных механическими замками, и запитанный от блока питания, к которому через предохранитель подключен разъем для подключения внешних устройств (видеорегистратора и радиоустройства). Технический результат изобретения - повышение точности измерения. 1 ил.

Изобретение относится к области электротехники и может быть использовано для поверки чувствительности индукционных электросчетчиков с вращающимися дисками к реверсированию последних под действием включенной в сеть после электросчетчика несимметричной для положительного и отрицательного полупериодов сетевого напряжения комплексной нагрузки. Схема для поверки индукционных электросчетчиков, выполненная на основе трансформатора с повышающей и понижающей вторичными обмотками, к первичной обмотке которого, включаемой в сеть переменного тока, подключена цепь из последовательно соединенных накопительного конденсатора и тиристора, конденсатор через высоковольтный диод связан с повышающей вторичной обмоткой трансформатора и заряжается от нее при отрицательных полупериодах сетевого напряжения, а управляющий переход тиристора соединен с понижающей обмоткой трансформатора через встречно последовательно включенные стабилитрон и диод, а также резистор, причем тиристор открывается в течение положительных полупериодов сетевого напряжения с некоторой временной задержкой от начала этих полупериодов. Технический результат заключается в возможности обеспечения создания несимметричной для положительных и отрицательных полупериодов сетевого напряжения комплексной нагрузки, что позволяет поверять электросчетчики индукционного типа с вращающимися дисками на предмет их защищенности от реверсивного движения этих дисков. 2 ил.

Изобретение относится к области электротехники и приборостроения. Устройство содержит вращающийся алюминиевый диск с осью вращения, с одной стороны которого установлен Ш-образный электромагнит с катушкой напряжения, подключенной параллельно вводу сети, а с другой оппозитно расположенный U-образный электромагнит с токовой катушкой, включенной в фазной цепи сети последовательно с нагрузкой, а также содержащий связанный с осью вращения счетный механизм учета расходуемой электроэнергии. При этом на U-образном электромагните размещена дополнительная токовая обмотка, обе токовых обмотки соединены с входным фазным проводником ввода сети через два высоковольтных силовых диода, связанных с фазным проводником ввода сети разными полярностями, а другие концы токовых обмоток соединены между собой и образуют выходной фазный проводник, связанный с нагрузкой, причем к обеим токовым обмоткам подключены раздельно две цепи из параллельно включенных электролитических конденсаторов и низковольтных диодов, гасящих экстратоки, трансформаторно возбуждаемые в токовых обмотках. Полярности этих низковольтных диодов, электролитических конденсаторов и высоковольтных силовых диодов совпадают между собой для каждой из двух фазных цепей; а токовые обмотки включены так, что образуют в U-образном магнитопроводе переменное магнитное поле с частотой сети. Технический результат заключается в обеспечении защиты индукционных электросчетчиков от неправильного учета электроэнергии при действии высокочастотных прерываний рабочего тока в активных нагрузках, допускающих такие прерывания. 1 ил.

Изобретение относится к электротехнике и может быть использовано при разработке приборов учета электроэнергии, не чувствительных к высокочастотному прерыванию тока в активной нагрузке типа нагревательных приборов. Устройство содержит последовательно включенные поверяемый электросчетчик, калиброванную активную нагрузку и амперметр переменного тока. При этом указанная измерительная цепь с поверяемым электросчетчиком индукционного типа включена к сети переменного тока через двунаправленный транзисторный коммутатор тока, управляемый от импульсного генератора с регулируемой частотой следования импульсов через высокочастотный трансформатор, раздельные вторичные обмотки которого связаны через ограничивающие резисторы с управляющими переходами «база-эмиттер» пары силовых транзисторов, включенных встречно-параллельно их переходами «коллектор-эмиттер» в составе двунаправленного транзисторного коммутатора тока. Импульсный генератор с регулируемой частотой подключен к частотомеру. Технический результат заключается в упрощении устройства для поверки индукционных приборов учета электроэнергии. 1 ил.

Изобретение относится к области электротехники и может быть использовано при испытаниях однофазных индукционных электросчетчиков. В устройстве в качестве нагрузки использован накопительный конденсатор, прерывающийся заряд которого при отрицательных полупериодах сетевого напряжения осуществлен от повышающего напряжение высокочастотного автотрансформатора с высоковольтным силовым диодом. При этом автотрансформатор подключен к электрической сети после исследуемого индукционного электросчетчика через последовательно включенные силовой транзистор и силовой диод, пропускающий ток только при действии отрицательных полупериодов сетевого напряжения. Коммутация тока заряда накопительного конденсатора силовым транзистором осуществляется подачей на его переход «база-эмиттер» периодической последовательности импульсных сигналов от генератора с настраиваемой частотой колебаний, например, в диапазоне 1…5 кГц, с усилителем мощности, а плавный во времени разряд накопительного конденсатора обратно в электрическую сеть в положительные полупериоды сетевого напряжения производится через включаемый в начале положительных полупериодов сетевого напряжения тиристор и последовательно с ним включенную катушку индуктивности, величина которой L согласуется с величиной емкости С накопительного конденсатора по формуле (L·С)1/2≈10-2 с. Технический результат заключается в возможности установления значения частоты прерываний тока нагрузки, при которой электросчетчик индукционного типа обладает наихудшей погрешностью правильного учета расходуемой электроэнергии. 1 ил.

Изобретение относится к области электротехники и может быть использовано при испытаниях однофазных индукционных электросчетчиков. Устройство для поверки электросчетчиков активной энергии индукционного типа, содержащее коммутирующие ток заряда конденсаторов транзисторы, управляемые от модулируемого генератора высокочастотных импульсов. При этом устройство выполнено по мостовой схеме, первая и вторая ветви которой, параллельно подключены к электросети, включающие последовательно установленные конденсатор и двунаправленный транзисторный коммутатор из двух однотипных параллельно-встречно соединенных транзисторов. Причем первая ветвь мостовой схемы подключена к фазному проводнику сети двунаправленным транзисторным коммутатором, а вторая ветвь - конденсатором, а в диагональ мостовой схемы включен управляемый симистор (двунаправленный тиристор), управление работой четырех транзисторов и симистором осуществлено от блока управления, синхронизируемого сетевым напряжением. Технический результат заключается в повышении точности производимой поверки. 20 ил.

Изобретение относится к измерительной технике. Устройство содержит накопительные конденсаторы, заряд которых осуществляется в первую и третью четверти периодов сетевого напряжения прерывистым током, а разряд происходит плавно во времени во второй и четвертой четвертях периодов сетевого напряжения. При этом конденсаторы попарно подключены к фазному и нулевому проводникам электросети через последовательно с ними включенные диод и транзистор с учетом полярности указанного подключения электролитических конденсаторов, образующих две мостовые схемы, попеременно работающие в положительную и отрицательную полуволны сетевого напряжения. В диагоналях мостовых схем включены последовательно установленные тиристор и дроссель, соединяющие последовательно каждую работающую пару заряженных накопительных конденсаторов мостовых схем для их плавного разряда обратно в сеть. Причем обмотки двух дросселей мостовых схем выполнены на едином магнитопроводе с периодическим его перемагничиванием, а включение-выключение соответствующих транзисторов и тиристоров осуществлено от блока управления, синхронизируемого от сетевого напряжения. Технический результат заключается в обеспечении возможности построения компактного и высокоэффективного устройства для определения погрешности учета электроэнергии при прерывании тока нагрузки на различных частотах прерываний в заданном диапазоне мощности нагрузок. 4 ил.
Наверх