Способ очистки теплоносителя тяжеловодного реактора от трития

Изобретение относится к области ядерной энергетики, в частности к очистке теплоносителя тяжеловодных реакторов от трития. Техническим результатом является поддержание содержания трития в тяжеловодном теплоносителе ядерного реактора на низком уровне, что позволит снизить радиационную опасность и увеличить срок непрерывной работы тяжеловодных реакторов. Производят непрерывный отбор части теплоносителя из контура реактора и возврат очищенного от трития теплоносителя в контур реактора, при этом отобранный поток разделяют на две части. Одну часть направляют в электролизер, где разлагают на водород и кислород. Полученный водород направляют в колонку разделения изотопов, а кислород направляют в сжигатель. Вторую часть теплоносителя испаряют и направляют полученный водяной пар в колонку разделения изотопов, где проводят разделение водорода по изотопному составу с выделением тяжелой компоненты, содержащей тритий. Тяжелую компоненту отводят для дальнейшей переработки, а легкую компоненту водорода, состоящую из дейтерия с уменьшенным содержанием трития, направляют в сжигатель, где окисляют кислородом с образованием тяжелой воды, которую конденсируют после сжигателя и возвращают в контур реактора. Сконденсированную в колонке разделения изотопов вторую часть теплоносителя также возвращают в контур реактора. 1 ил.

 

Предлагаемое техническое решение относится к области ядерной энергетики, в том числе к очистке теплоносителя тяжеловодных реакторов от трития.

Известен способ удаления 3Не из тяжеловодного контура ядерного реактора (патент РФ №2322713), однако он неприменим для очистки от трития.

Известен единственный способ поддержания концентрации трития в тяжеловодном теплоносителе ядерных реакторов на допустимом уровне, заключающийся в отборе части теплоносителя - тяжелой воды - и возврате очищенного от трития теплоносителя в контур теплоносителя (Canada Enters the Nuclear Age. A Technical History Of Atomic Energy of Canada Limited. Издано по заказу AECL Мак-Гил Королевским университетским издательством, 1997 год, стр.80,286, 350).

Недостатком данного способа является то, что такие отборы проводятся периодически примерно один раз в год с остановкой реактора, отобранный теплоноситель доставляется к установке очистки от трития, вместо отобранного теплоносителя в контур теплоносителя заливается чистый теплоноситель, после чего производится запуск реактора. Для уменьшения объема отбираемого теплоносителя концентрация трития в контуре теплоносителя к моменту отбора доводят до предельно допустимой величины, что связано с высокой радиационной опасностью.

Техническим результатом, на которое направлено изобретение, является поддержание содержания трития в тяжеловодном теплоносителе ядерного реактора на низком уровне за счет непрерывного отвода образующегося трития с помощью предлагаемого технического решения, что позволит снизить радиационную опасность и увеличить срок непрерывной работы тяжеловодных реакторов.

Сущность предлагаемого технического решения заключается в том, что предложен способ очистки теплоносителя тяжеловодного реактора от трития, заключающийся в отборе части теплоносителя из контура реактора и возврате очищенного от трития теплоносителя в контур реактора, при этом отбор производят непрерывно, отобранный поток разделяют на две части, одну часть направляют в электролизер, где разлагают на водород и кислород, полученный водород направляют в колонку разделения изотопов, а кислород направляют в сжигатель, вторую часть теплоносителя испаряют и направляют полученный водяной пар в колонку разделения изотопов, где проводят разделение водорода по изотопному составу с выделением тяжелой компоненты, содержащей тритий, тяжелую компоненту отводят для дальнейшей переработки, а легкую компоненту водорода, состоящую из дейтерия с уменьшенным содержанием трития, направляют в сжигатель, где окисляют кислородом с образованием тяжелой воды, которую конденсируют после сжигателя и возвращают в контур реактора, а сконденсированную в колонке разделения изотопов вторую часть теплоносителя также возвращают в контур реактора.

Предлагаемое техническое решение позволяет за счет постоянного выведения образующегося в активной зоне реактора трития поддерживать концентрацию трития на низком уровне, что существенно уменьшает радиационную опасность теплоносителя в тяжеловодных реакторах.

Предлагаемое техническое решение поясняется схемой, представленной на фигуре, где 1 - отобранный поток теплоносителя из контура реактора, 2 - поток теплоносителя, направляемый в электролизер, 3 - электролизер, 4 - поток водорода, 5 - поток кислорода, 6 - испаритель, 7 - поток газообразного теплоносителя, 8 - колонка разделения изотопов, 9 - концентрат трития, 10 - блок разделения изотопов, 11 - поток водорода после удаления трития, 12 - сжигатель, 13 - поток возврата теплоносителя после очистки от трития, 14 - поток сконденсированного теплоносителя.

Способ осуществляется следующим образом.

Отобранный из контура реактора поток теплоносителя - тяжелой воды 1 разделяют на две части, одну часть 2 направляют в электролизер 3, где разлагают на водород 4 и кислород 5, полученный водород 4 направляют в колонку разделения изотопов 8, а кислород 5 направляют в сжигатель 12, вторую часть теплоносителя испаряют в испарителе 6 и направляют полученный газообразный теплоноситель 7 в колонку разделения изотопов 8, где проводят разделение водорода по изотопному составу с выделением тяжелой компоненты, содержащей тритий, тяжелую компоненту 9 отводят для дальнейшей переработки, а легкую компоненту водорода 11, состоящую из дейтерия с уменьшенным содержанием трития, направляют в сжигатель 12, где окисляют кислородом 5 с образованием очищенной от трития теплоносителя - тяжелой воды 13, которую конденсируют после сжигателя в конденсаторе (на фигуре не показан) и возвращают в контур реактора. В процессе разделения изотопов в колонке 8 газообразный теплоноситель 7 конденсируют и отводят в виде жидкости 14, которую также возвращают в контур реактора. Группа колонок разделения 8 объединены в блок разделения изотопов 10.

Таким образом, данное решение решает проблему очистки теплоносителя тяжеловодных реакторов без их остановки, что позволит снизить радиационную опасность и увеличить срок непрерывной работы тяжеловодных реакторов.

Способ очистки теплоносителя тяжеловодного реактора от трития, заключающийся в отборе части теплоносителя из контура реактора и возврате очищенного от трития теплоносителя в контур реактора, отличающийся тем, что отбор производят непрерывно, отобранный поток разделяют на две части, одну часть направляют в электролизер, где разлагают на водород и кислород, полученный водород направляют в колонку разделения изотопов, а кислород направляют в сжигатель, вторую часть теплоносителя испаряют и направляют полученный водяной пар в колонку разделения изотопов, где проводят разделение водорода по изотопному составу с выделением тяжелой компоненты, содержащей тритий, тяжелую компоненту отводят для дальнейшей переработки, а легкую компоненту водорода, состоящую из дейтерия с уменьшенным содержанием трития, направляют в сжигатель, где окисляют кислородом с образованием тяжелой воды, которую конденсируют после сжигателя и возвращают в контур реактора, а сконденсированную в колонке разделения изотопов вторую часть теплоносителя также возвращают в контур реактора.



 

Похожие патенты:

Изобретение относится к источникам электроснабжения космического аппарата. .

Изобретение относится к источникам энергоснабжения космических аппаратов. .

Изобретение относится к энергомашиностроению. .

Изобретение относится к ядерной энергетике, а именно к системам обеспечения глубокой подкритичности ядерного реактора космической ядерной энергетической установки на этапе входа космического аппарата с орбиты в плотные слои атмосферы Земли.

Изобретение относится к источникам электроснабжения космических аппаратов. .

Изобретение относится к источникам электроснабжения космического аппарата. .

Изобретение относится к энергомашиностроению и касается главного циркуляционного насосного агрегата (ГЦНА) преимущественно для энергоблоков АЭС. .

Изобретение относится к области атомной энергетики, в частности к атомным паропроизводящим установкам морских атомных теплоэлектростанций. .

Изобретение относится к ядерной энергетике. .

Изобретение относится к области атомной энергетики и предназначено для использования на атомных электрических станциях (АЭС) с промежуточным перегревом пара

Изобретение относится к ядерным энергетическим установкам (ЯЭУ), используемым в качестве источников электрической энергии космических аппаратов

Изобретение относится к теплообменной технике и предназначено для использования в системе водоподготовки при подпитке питательной водой второго контура в стояночном режиме при поддержании ядерной энергетической установки (ЯЭУ)

Изобретение относится к радиационной защите в составе ядерной энергетической установки для космического аппарата. Защита в местах прохода трубопроводов снабжена вставками из теплозащитного материала, например, на основе кварцевых волокон, закрепленными на внешней поверхности защиты и отделяющими трубопроводы от герметизирующей оболочки контейнера с гидридом лития. Кроме этого, переднее и заднее днища защиты снабжены разделенными в окружном направлении на полости коллекторами, которые соединены между собой трубками, содержащими охлаждающий теплоноситель и закрепленными на размещенной в гидриде лития между коллекторами перфорированной обечайки защиты, переднее днище которой дополнительно снабжено эквидистантно расположенной сферической оболочкой с радиальными выштамповками, образующими совместно с передним днищем изолированные полости, соединяющиеся в центре и имеющие на периферии выход в полости коллектора на переднем днище, а полости заднего коллектора снабжены патрубками подвода и отвода теплоносителя. При этом узлы крепления защиты к агрегатам ядерной энергетической установки размещены на перегородках полостей коллекторов, выполненных на переднем и заднем днищах защиты. Технический результат: обеспечение приемлемого температурного режима гидрида лития, исключающего выход из него водорода и его диффузию через оболочку защиты в космическое пространство. 2 з.п. ф-лы, 1 ил.

Изобретение относится к источникам электроснабжения космического аппарата. Пары балок, стыкующихся крайними балками с космическим аппаратом, размещены по трем продольным плоскостям вокруг космического аппарата. При этом одна из пары балок стыкуется космическим аппаратом в плоскости, обращенной к ядерной энергетической установке, а вторая балка - со шпангоутом, с закрепленными в тех же плоскостях тремя парами балок с панелями холодильника излучателя, которые соединены с энергетическим блоком и расположены вокруг него. Шпангоут состоит из двух отдельных частей - на одной размещены шарниры балок, расположенных вокруг энергетического блока, на второй - шарниры балок, расположенных вокруг космического аппарата и стыкующихся между собой в поперечной плоскости. Технический результат - приближение положения центра массы ядерной энергетической установки к плоскости стыковки с космическим аппаратом. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области атомной энергетики, в частности к энергетическим ядерным реакторам, и может найти применение на атомных теплоэлектростанциях (АТЭС) и различного назначения энергетических установках. Наиболее эффективно использование изобретения для создания энергоемких малогабаритных АЭС, АТЭС и компактных высокотемпературных атомных энергетических установок (АЭУ). Реактор содержит теплообменную камеру, выполненную радиально секционированной, с комбинированной конструкцией ее секций и теплопроводящих элементов (тепловодов), а также выполненные с возможностью охлаждения органы регулирования в виде кольцевых решеток с поглощающими стержнями. Технический результат - повышение температуры нагрева теплоносителя и эффективности работы реактора. 9 з.п. ф-лы, 7 ил.

Изобретение относится к способам эксплуатация АЭС. В пиковые часы электрической нагрузки газотурбинная установка вырабатывает дополнительную электроэнергию, в котле-утилизаторе генерируется пар, перегреваемый в пароводородном перегревателе и направляемый в дополнительную паровую турбину, также вырабатывающую дополнительную электроэнергию. В ночные внепиковые часы электрической нагрузки невостребованная электроэнергия аккумулируется в виде водорода и кислорода, ГТУ останавливается, дополнительная паровая турбина останавливается или работает на пониженной нагрузке на пару, отбираемом из устройства парораспределения перед ЦВД паровой турбины. Технический результат - аккумулирование в ночные внепиковые часы электрической нагрузки невостребованной энергии и выработка дополнительной электроэнергии в пиковые часы электрической нагрузки с сохранением безопасности и надежности эксплуатации станции за счет вывода оборудования парогазовой установки и водородного хозяйства за территорию площадки АЭС. 1 ил.

Изобретение относится к области теплотехники тяжелых жидкометаллических теплоносителей и может быть использовано в исследовательских, испытательных стендах и установках атомной техники с реакторами на быстрых нейтронах. В охладителе перед патрубком подвода охлаждающей воды установлен регулятор ее расхода, а перед ним - задатчик температуры, вход которого соединен с выходом термопреобразователя, установленного на патрубке отвода жидкометаллического теплоносителя. Технический результат - повышение эффективности теплообмена за счет автоматизации процесса. 1 з.п. ф-лы, 1 ил.

Изобретение относится к космическим аппаратам (КА), может быть использовано для обеспечения отведения на заданное расстояние ядерной энергетической установки (ЯЭУ) от приборно-агрегатного отсека КА. Устройство для отведения ЯЭУ представляет собой трансформируемую пространственную ферменную конструкцию, базовым элементом которой является секция в форме параллелепипеда с квадратными основаниями, общими для двух смежных секций, со складывающимися боковыми гранями на двух противоположных сторонах секции и со складывающимися диагоналями по одной на двух других противоположных сторонах. Основания, боковые грани и диагонали выполнены из полых стержневых элементов и соединены между собой шарнирными узлами. Диагонали смежных секций установлены разнонаправленно, а продольные и поперечные стержневые элементы боковых граней и оснований скреплены между собой фитингами, образуя с двух противоположных складывающихся боковых граней секции по две скрепленные между собой жесткие рамы. В шарнирных узлах установлены фиксаторы конструкции в развернутом состоянии. Пружины кручения в шарнирных узлах установлены на осях вращения и закреплены в проушинах фитингов, а фиксаторы конструкции в развернутом состоянии выполнены в виде защелки. Техническим результатом изобретения является автоматическое отведение на заданное расстояние ЯЭУ от агрегатного отсека КА с созданием после отведения жесткой конструкции системы. 2 з.п. ф-лы, 7 ил.

Изобретение относится к ядерной технике и предназначено для использования в энергетических установках с реактором на быстрых нейтронах c теплоносителем в виде свинца или его сплава. Установка включает шахту реактора с верхним перекрытием, размещенный в шахте реактор с активной зоной, парогенераторы, циркуляционных насосы, циркуляционные трубопроводы, системы исполнительных механизмов и устройств для обеспечения пуска, эксплуатации и остановки реакторной установки. Парогенераторы выполнены в виде трубчатых теплообменников, в которых свинцовый теплоноситель течет внутри труб, а вода-пар - в межтрубном пространстве, парогенераторы размещены в отдельных боксах и сообщены с шахтой реактора циркуляционными трубопроводами подъема и слива свинцового теплоносителя. Парогенераторы и большая часть циркуляционных трубопроводов размещены выше уровня свинцового теплоносителя в шахте реактора, циркуляционные насосы размещены в шахте реактора на циркуляционных трубопроводах подъема горячего свинцового теплоносителя, обеспечена естественная циркуляция свинцового теплоносителя при отключении циркуляционных насосов. Технический результат - снижение удельного объема свинцового теплоносителя на единицу мощности реактора. 5 з.п. ф-лы, 3 ил.
Наверх