Регулярная насадка для тепло-массообменных аппаратов



Регулярная насадка для тепло-массообменных аппаратов
Регулярная насадка для тепло-массообменных аппаратов
Регулярная насадка для тепло-массообменных аппаратов
Регулярная насадка для тепло-массообменных аппаратов

 


Владельцы патента RU 2457026:

Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет инженерной экологии" (RU)

Изобретение направлено на повышение испарительного охлаждения воды в замкнутых системах оборотного водоснабжения, абсорбции очистки и осушки природного газа, может быть использовано в качестве смесителей жидких и газовых потоков, в качестве контактных элементов в конденсаторах смешения и биофильтрах. Регулярные насадки выполняют многоярусными секциями, состоящими из собранных параллельно уложенных в ряды каплевидных элементов. Боковая поверхность каллевидного элемента от места соединения посредством стержня выполнена с продолжениями, образующими γ-образный профиль. Поверхность γ-образных элементов выполнена из лавсановых мононитей в виде сетки. Закругленная кромка профиля ориентирована навстречу газовому потоку, а концы профиля ориентированы навстречу потоку жидкости. Угол атаки указанных элементов по отношению к газовому потоку находится в пределах от 0° до 20°, элементы расположены в шахматном порядке и при этом ориентация элементов в соседних рядах по высоте аппаратов выполнена с противоположным наклоном и со смещением по горизонтали на величину, равную 1.0-3.0 ширины элемента насадки, а шаг элементов в каждом ряду равен 1.5-3.5 ширины, причем высота элемента составляет 4.0-8.0 ширины элемента насадки. 3 з.п. ф-лы, 4 ил.

 

Регулярная насадка для тепло-массообменных аппаратов относится к конструкциям регулярных насадок, которые применяются в процессах тепло-массообмена в градирнях при осуществлении испарительного охлаждения воды в замкнутых системах оборотного водоснабжения, абсорбции очистки и осушки природного газа, а также в качестве смесителей жидких и газовых потоков, в качестве контактных элементов в конденсаторах смешения и биофильтрах, и может найти применение в технологических процессах теплоэнергетики, химической, нефтяной, газовой, пищевой и парфюмерной отраслях промышленности.

Известна регулярная насадка в виде секции вертикальных гофрированных листов (SU №1674950, B01D 53/20).

Недостатком такой насадки является ее сравнительно высокое гидравлическое сопротивление при невысокой эффективности.

Наиболее близкой по технической сущности и достигаемому эффекту является регулярная насадка для тепло- и массообменных аппаратов, выполненная в виде секций, собранных из параллельно уложенных в ряды полых элементов с капельным профилем (SU №1599081, B01D 53/20).

Недостатком таких насадок при коридорном расположении элементов секции является то, что значительная часть реагирующих потоков проходит байпасом по сквозным прямым каналам между соседними элементами, образующими секцию регулярной насадки, что снижает эффективность процессов тепло- и массообмена. В случае шахматного расположения элементов секции эффективность процессов тепло- и массообмена несколько увеличивается, но при этом существенно возрастает гидравлическое сопротивление насадки. К недостаткам такой конструкции также относится недостаточно интенсивная турбулизация контактирующих потоков внутри секции насадки и, как следствие, несущественное повышение эффективности тепло- и массообменных процессов

Также недостатком известных конструкций является то, что их наибольшая тепло- и массообменная эффективность процесса проявляется при проведении определенных технологических процессов, где гидравлическое сопротивление не является лимитирующим, что ограничивает область их применения.

Задача изобретения - интенсификация процессов тепло- и массообменна в регулярных насадках при одновременном снижении гидравлического сопротивления.

Технический результат, который может быть получен при использовании данного изобретения, заключается в повышении тепло- и массообменной эффективности регулярных насадок для тепло- и массообменных аппаратов и градирен.

Указанный технический результат достигается тем, что в регулярной насадке для тепло-масообменных аппаратов поверхность элемента, выполненная в виде секций, установленных в несколько ярусов по высоте аппарата, собранных из параллельно уложенных в ряды каплевидных элементов, боковая поверхность каплевидного элемента от места соединения посредством стержня выполнены с продолжениями, образующими γ-образный профиль элемента, поверхность γ-образных элементов выполнена из лавсановых сетчатых мононитей, причем закругленная кромка профиля ориентирована навстречу газовому потоку, а концы профиля ориентированы навстречу потоку жидкости, угол атаки указанных элементов по отношению к газовому потоку находится в пределах от 0° до 20°, элементы расположены в шахматном порядке и при этом ориентация элементов в соседних рядах по высоте аппаратов выполнена с противоположным наклоном друг относительно друга и выполнена со смещением друг относительно друга по горизонтали на величину, равную 1.0-3.0 ширины элемента насадки, а шаг элементов в каждом ряду равен 1.5-3.5 ширины, причем высота элемента составляет 4.0-8.0 ширины элемента насадки. Элементы насадки секции в аппарате прямоугольного сечения расположены под углом 90° относительно элементов насадки в соседних секциях. А элементы насадки в каждом ярусе аппарата круглого сечения образуют восьмилепестковую конструкцию и в соседних по высоте рядах смещены относительно друг друга на величину, равную 10°-40°.

На фиг.1 изображена секция собранных из нескольких рядов по высоте γ-образных элементов в шахматном порядке; на фиг.2 в изометрии показан элемент насадки; на фиг.3 элементы насадки секции в аппарате прямоугольного сечения расположены под углом 90° относительно элементов насадки в соседних секциях; на фиг.4 показаны элементы насадки в соседних по высоте рядах, элементы выполнены со смещением относительно друг друга на величину, равную от 30° до 60°, в аппаратах круглого сечения.

Регулярная насадка для тепло-массообменных аппаратов выполнена в виде секций, собранных из параллельно уложенных в ряды γ-образных элементов высотой L, установленных в несколько ярусов по высоте аппарата элементов 2, 3, 4, боковая поверхность каплевидного элемента от места соединения посредством стержня 5, выполнена с продолжениями, образующими γ-образный профиль элемента, и расстояние между рядами элементов 2, 3, 4 по вертикали z составляет 0.7-1.5 высоты элемента, угол атаки α указанных элементов по отношению к газовому потоку находится в пределах от 0° до 20°, элементы расположены в шахматном порядке, при этом их ориентация в соседних рядах по высоте аппарата выполнена с противоположным наклоном относительно друг друга и со смещением по горизонтали t на величину, равную 1.0-3.0 ширины элемента насадки, а шаг элементов m в каждом ряду равен 1.5-3.5 ширины, причем высота L элемента составляет 4.0-8.0 ширины элемента насадки h. А элементы насадки в каждом ярусе аппарата круглого сечения образуют восьмилепестковую конструкцию и в соседних по высоте рядах смещены β относительно друг друга на величину, равную 10°-40°.

Регулярная насадка работает следующим образом. Жидкая фаза подается равномерно на верхнюю часть секций, собранных, например, из параллельно уложенных в ряды γ-образных элементов, уложенных в горизонтальные ряды 2, 3, 4, и стекает по их поверхностям в виде тонкой пленки и капельных струек жидкости, контактируя с восходящими потоками газа, по свободным косым каналам под углом α, образованным смещением в параллельных рядах элементов насадки. Таким образом, массообмен между жидкостью и газом происходит в наиболее эффективном капельно-пленочном режиме течения жидкости. Косо направленные каналы, образованные со смещением элементов насадки в соседних параллельных рядах, обеспечивают увеличение пути прохождения контактирующих потоков в объеме аппарата, а также условия для более полного смывания потоками всей поверхности насадки.

Эффективность процесса тепло- и массообмена при этом в исследованном диапазоне нагрузок по газу 0÷3.0 м/с и по жидкости 0÷10.0 м3/(м2·ч) увеличивается до 10%.

Опытным путем установлено, что регулярная насадка в виде секций из многоуровневых групп элементов насадки обладает свойством равномерно перераспределять потоки жидкости по всему поперечному сечению секции насадки, даже при недостаточно равномерной первоначальной раздаче жидкости на входе в секции насадки из-за дефектов водораздающей форсунки аппарата.

Выполнение насадки в виде γ-образных элементов позволяет уменьшить гидравлическое сопротивление со стороны воздуха.

Компоновка секции насадки с шагом между соседними элементами насадки в каждом ряду в пределах от 1.5 до 3.5 ширины элемента насадки h обусловлена следующим. Нижний предел - 1.5 h объясняется тем, что дальнейшее сужение «живого сечения» свободных каналов приводит к заметному росту гидравлического сопротивления насадки, что нежелательно. Верхний предел - 3.5 h объясняется тем, что при дальнейшем увеличении шага между соседними насадками в рядах секции существенно снижается удельная поверхность насадки, что также нецелесообразно.

Смещение элементов насадок в параллельных рядах секции 1 насадки в пределах от 1.0 до 3.0 ширины элемента насадки h обусловлено требованием оптимизации условий для обеспечения максимальной эффективности процесса тепло-массообмена при минимальном гидравлическом сопротивлении за счет организации множества взаимодействующих во всем объеме секции регулярной насадки косонаправленных каналов для турбулизации потока газовой фазы и увеличения поперечного перемешивания контактирующих потоков.

Выполнение насадки в виде γ-образного профиля позволяет дополнительно интенсифицировать тепло- и массообмен на 7-10% в процессах испарительного охлаждения оборотной воды в вентиляторных градирнях.

Предлагаемая регулярная насадка позволяет повысить эффективность на 10-15% в процессах охлаждения жидкостей, абсорбции и т.п. за счет увеличения поперечного перемешивания и турбулизации потоков, проста в изготовлении - отдельные ее γ-образные элементы изготавливают методом горячей прессовки.

1. Регулярная насадка для тепло-массообменных аппаратов, выполненная в виде секций, установленных в несколько ярусов по высоте аппарата, собранных из параллельно уложенных в ряды каплевидных элементов, отличающаяся тем, что боковая поверхность каплевидного элемента от места соединения посредством стержня выполнена с продолжениями, образующими «γ»-образный профиль элемента, поверхность «γ»-образных элементов выполнена из лавсановых мононитей в виде сетки, причем закругленная кромка профиля ориентирована навстречу газовому потоку, а концы профиля ориентированы навстречу потоку жидкости, угол атаки указанных элементов по отношению к газовому потоку находится в пределах от 0° до 20°, элементы расположены в шахматном порядке, и при этом ориентация элементов в соседних рядах по высоте аппаратов выполнена с противоположным наклоном друг относительно друга и выполнена со смещением друг относительно друга по горизонтали на величину, равную 1,0-3,0 ширины элемента насадки, а шаг элементов в каждом ряду равен 1,5-3,5 ширины, причем высота элемента составляет 4,0-8,0 ширины элемента насадки.

2. Регулярная насадка по п.1, отличающаяся тем, что элементы насадки секции в аппарате прямоугольного сечения расположены под углом 90° относительно элементов насадки в соседних секциях.

3. Регулярная насадка по п.1, отличающаяся тем, что элементы насадки в каждом ярусе аппарата круглого сечения образуют восьмилепестковую конструкцию.

4. Регулярная насадка по п.1, отличающаяся тем, что элементы насадки в аппаратах круглого сечения в соседних по высоте рядах смещены относительно друг друга на величину, равную 10-40°.



 

Похожие патенты:
Изобретение относится к области теплообмена, а именно к области теплообменных аппаратов, и может быть использовано в качестве элемента тепломассообменных устройств общего назначения, а именно, в процессах ректификации, абсорбции, очистки и осушки природного газа, а также в качестве смесителей жидких и газовых потоков, в качестве разделителей фаз в сепарационных устройствах, в качестве контактных элементов в конденсаторах смешения и может найти применение практически во всех технологических процессах нефтяной и газовой промышленности.

Изобретение относится к конструкциям регулярных насадок, которые применяются в различных отраслях промышленности. .

Изобретение относится к конструкциям регулярных насадок, применяемых для проведения тепло- и массообменных процессов в системе газ (пар) - жидкость, таких как процесс ректификации, абсорбции, очистки и осушки природного газа, а также насадка может найти применение в технологических процессах химической, нефтяной, газовой и других отраслях промышленности.

Изобретение относится к способу ведения процессов абсорбции, ректификации, а также процессов нефтепереработки и газоочистки. .

Изобретение относится к конструкциям контактных устройств, а именно к регулярным насадкам, и может быть использовано для осуществления таких процессов, как экстракция, абсорбция и ректификация, в нефтеперерабатывающей, нефтехимической и химической отраслях промышленности.

Изобретение относится к способу разложения высококипящих побочных продуктов производства изопрена из изобутилена и формальдегида путем смешения высококипящих побочных продуктов с перегретым водяным паром и контакта с катализатором в одно- или двухполочных реакторах при нагревании с получением изопрена, формальдегида и изобутилена, характеризующемуся тем, что жидкие высококипящие побочные продукты сначала испаряют и перегревают до температуры 300-350°С совместно с водяным паром в соотношении 1:1,0-1,2 в конвекционной части пароперегревательной печи в системе прямых труб, снабженных выносным коллектором, затем смешивают в смесителе с перегретым водяным паром до весового соотношения 1:3,0-4,0, после чего с температурой 400-450°С подаются в реактор, в надкатализаторной зоне которого расположена отбойно-распределительная решетка с общим живым сечением 15%, снабженная отверстиями 20 мм и колпачками диаметром 100 мм и высотой 80 мм.

Изобретение относится к конструкциям регулярных насадок, которые применяются при процессах абсорбции и ректификации, и может найти применение в технологических процессах нефтяной, газовой, химической и других смежных отраслях промышленности.

Изобретение относится к тепло - и массообменным устройствам и может быть использовано для осуществления процесса испарительного охлаждения оборотной воды в градирнях энергетических и других промышленных предприятий, например, на электростанциях.

Изобретение относится к технологическому ректификационному оборудованию и, в частности, к регулярным насадкам ректификационных колонн. .

Изобретение относится к способу изготовления регулярной насадки для аппаратов, предназначенных для проведения массообменных процессов в системах газ (пар) - жидкость, в частности для абсорбционных и ректификационных колонн

Изобретение относится к конструкциям насадочных аппаратов, применяемых для проведения массообменных процессов в системе газ (пар) - жидкость, таких как процесс ректификации, абсорбции, десорбции, очистки и осушки природного газа, а также изобретение может найти применение в технологических процессах химической, нефтяной, газовой и других отраслей промышленности

Изобретение относится к структурированной насадке для реактора

Изобретение относится к аппаратам для проведения массообменных процессов в системах газ (пар) - жидкость, в частности к абсорбционным и ректификационным колоннам, и может быть использовано в газовой, химической и нефтеперерабатывающей промышленности

Изобретение относится к конструкциям регулярных насадок и может найти применение в технологических процессах нефтяной, газовой, химической и других отраслях промышленности

Изобретение относится к области оборотного водоснабжения, а именно к конструктивным элементам градирен и других аппаратов для тепломассообмена между жидкими и газообразными средами

Изобретение относится к области оборотного водоснабжения, а именно к конструктивным элементам градирен и других аппаратов для тепломассообмена между жидкими и газообразными средами. Полимерная труба оросителя градирни содержит плоские сплошные стенки и выполнена в поперечном сечении в виде прямоугольника или квадрата, на стенках трубы выполнены последовательно чередующиеся ряды выступов или впадин, причем каждый выступ или впадина расположены под углом к поперечному сечению трубы от 30° до 45°, причем прямоугольная или квадратная в поперечном сечении труба выполнена с закругленными углами, в продольном направлении полимерная труба разделена поперечными выпуклыми узкими и широкими гофрами на секции, при этом узкие и широкие поперечные гофры поочередно чередуются, в каждой секции выполнены или, по крайней мере, один ряд выступов или, по крайней мере, один ряд впадин, причем выступы выполнены в два раза шире впадин, а вдоль трубы выполнено последовательно одна секция с выступами, две секции с впадинами, две секции с выступами и одна секция с впадинами. В результате достигается повышение интенсивности тепломассообмена при повышении надежности работы оросителя градирни, собранного из этих труб. 1 ил.

Предложен структурированный насадочный модуль с поперечным расположением гофров для использования в колоннах массопереноса или теплообмена, который имеет конкретное предназначение в жестких условиях эксплуатации, в которых проблемой являются загрязнение, образование нагара и эрозия. Структурированный насадочный модуль содержит множество вертикальных, продолжающихся параллельно, гофрированных пластин. Используются дистанционные проставки для удержания гофров смежных пластин на расстоянии друг от друга для уменьшения возможности накопления твердых частиц на поверхности пластин. Пластины также не содержат отверстий или обработанной поверхности, которые могли бы увеличить возможность накопления твердых частиц на пластинах. 3 н. и 17 з.п. ф-лы, 4 ил.
Наверх