Автоматизированное устройство для охлаждения образцов в процессе проведения длительных усталостных испытаний сварных образцов при низких температурах

Изобретение относится к области судостроения (прочности конструкции корпусов судов), касается вопросов обеспечения и повышения эксплуатационного ресурса судов арктического плавания, сварные конструкции которых находятся под воздействием циклических нагрузок и низких температур. Заявленное автоматизированное устройство для охлаждения образцов в процессе проведения длительных усталостных испытаний сварных образцов при низких температурах включает камеру, силовой блок для нагружения испытуемого образца, размещенного внутри корпуса камеры, источник охлаждающей среды со средством подачи последней в камеру и систему контроля температуры в камере, корпус камеры разделен на два отсека перегородкой, имеющей зазоры в верхней и нижней частях камеры, в одном из которых размещен источник охлаждающей среды - хладоагент в виде твердой углекислоты, а другой предназначен для размещения испытуемого образца, при этом силовой блок для нагружения испытуемого образца выполнен в виде механизма, создающего растягивающее циклическое усилие на образец, причем средство подачи охлаждающей среды в виде холодного воздуха из отсека с хладоагентом в отсек с испытуемым образцом выполнено в виде принудительного нагнетателя воздуха, размещенного в отсеке с хладоагентом, а система контроля температуры в отсеке камеры с образцом представляет собой размещенные в упомянутом отсеке датчики температуры, связанные с внешним управляющим компьютером, которым оснащено устройство. Технический результат, достигаемый от реализации заявленного изобретения, заключается в решении задачи по обеспечению проведения усталостных испытаний сварных образцов при их циклическом растяжении в условиях, максимально приближенных к натурным, путем глубокого охлаждения испытуемых образцов в воздушной среде. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к области судостроения (прочности конструкции корпусов судов) и касается вопросов обеспечения и повышения эксплуатационного ресурса судов арктического плавания, сварные конструкции которых находятся под воздействием циклических нагрузок и низких температур.

При проектировании указанных конструкций необходимо знание характеристик усталостной прочности в условиях низких температур (до -50°C), для чего необходимо проведение усталостных испытаний сварных соединений и узлов конструкций при низких температурах. При этом испытания должны проводиться на воздухе, так как конструкции, работающие при температурах в пределах от -40°C и ниже, очевидно, находятся вне воды, температура которой не может быть ниже 0°C.

Известно устройство для температурных испытаний (патент на полезную модель - RU 90902 U1, 09.02.2009), содержащее корпус, в котором размещены термокамера с нагревательными элементами, емкость с охлаждающей средой и испытуемые изделия на специальной подвеске. Это устройство позволяет подвергать испытуемые изделия воздействию высоких температур и охлаждению. Управление перемещением изделий из термокамеры в охлаждающую жидкую среду осуществляется с пульта управления, расположенного вне устройства. В этом устройстве приложение механических усилий к образцу не предусмотрено.

Известна также установка для усталостных испытаний при контролируемой температуре и влажности (патент FR 2738063 (A1), 28.02.1997), принятая в качестве прототипа, состоящая из герметичных камер, в каждой из которых размещается нагружающее устройство для испытаний на изгиб опытных образцов, и в которые подается поток жидкости заданной температуры.

Недостатком известного устройства является охлаждение образца в жидкой среде, что не позволяет проводить испытания сварных образцов в охлажденной воздушной среде при низких температурах, без воздействия жидкости, то есть в условиях, приближенных к натурным условиям арктического плавания судов.

Кроме того, это устройство не позволяет производить приложение к образцу растягивающей циклической нагрузки, так необходимой для получения усталостных характеристик в условиях растяжения, характерного для большинства высоконапряженных судовых конструкций.

Задачей предлагаемого изобретения является обеспечение проведения усталостных испытаний сварных образцов при их циклическом растяжении в условиях, максимально приближенных к натурным, путем глубокого охлаждения испытуемых образцов в воздушной среде.

Это достигается тем, что у автоматизированного устройства для охлаждения образцов в процессе проведения длительных усталостных испытаний сварных образцов при низких температурах, включающего камеру, силовой блок для нагружения испытуемого образца, размещенного внутри корпуса камеры, источник охлаждающей среды со средством подачи последней в камеру и систему контроля температуры в камере, по изобретению корпус камеры разделен на два отсека перегородкой, имеющей зазоры в верхней и нижней частях камеры, в одном из которых размещен источник охлаждающей среды - хладоагент в виде твердой углекислоты, а другой предназначен для размещения испытуемого образца. При этом силовой блок для нагружения испытуемого образца выполнен в виде механизма, создающего растягивающее циклическое усилие на образец. Средство подачи охлаждающей среды в виде холодного воздуха из отсека с хладоагентом в отсек с испытуемым образцом выполнено в виде принудительного нагнетателя воздуха, размещенного в отсеке с хладоагентом, а система контроля температуры в отсеке камеры с образцом представляет собой размещенные в упомянутом отсеке датчики температуры, связанные с внешним управляющим компьютером, которым оснащено устройство.

При этом в качестве силового блока для нагружения испытуемого образца использована испытательная машина с пульсатором типа марки МУП-50.

Кроме того, в качестве принудительного нагнетателя холодного воздуха из отсека с твердой углекислотой для охлаждения испытуемого образца использован воздушный вентилятор.

Наряду с этим корпус камеры выполнен с теплоизоляцией.

Принятие в качестве источника охлаждающей среды - хладоагента в виде твердой углекислоты обеспечивает поддержание в течение длительного времени низкой температуры при проведении испытаний сварных образцов в условиях охлажденной воздушной среды.

Выполнение системы контроля температуры в отсеке камеры с испытуемым образцом в виде датчиков температуры, связанных с внешним управляющим компьютером, обеспечивает поддержание температуры испытаний образцов в заранее заданных пределах и мониторинг текущего значения температуры.

Сущность изобретения поясняется рисунком, на котором схематически представлено предлагаемое устройство.

Автоматизированное устройство для охлаждения образцов в процессе проведения длительных усталостных испытаний сварных образцов при низких температурах воздуха включает камеру 1, корпус которой имеет теплоизоляцию и разделен на два отсека 2, 3 перегородкой 4, установленной с зазорами 5, 6 в верхней и в нижней частях камеры соответственно. Устройство имеет силовой блок 7 для нагружения циклическим усилием испытуемого образца 8, размещенного внутри отсека 2 камеры 1. В отсеке 3 камеры размещен источник охлаждающей среды - хладоагент в виде твердой углекислоты 9 и средство принудительной подачи 10 в камеру 2 охлажденного в камере 3 воздуха, который выполнен в виде воздушного вентилятора. Силовой блок 7 для нагружения испытуемого образца 8 растягивающим циклическим усилием выполнен в виде механизма, в качестве которого может быть использована испытательная машина с пульсатором типа марки МУП-50. Устройство оснащено системой контроля температуры в отсеке 2 камеры с образцом 8, представляющее собой размещенные в упомянутом отсеке 2 датчики температуры 11, связанные с внешним управляющим компьютером 12, с которым связан также и воздушный вентилятор 10.

Функционирование предлагаемого автоматизированного устройства для охлаждения образцов в процессе проведения длительных усталостных испытаний сварных образцов при низких температурах воздуха осуществляется следующим образом.

Перед монтажом устройства производится установка испытуемого образца 8 в захваты 13, 14 испытательной машины 7 и выполняются операции, связанные с центровкой образца 8 и подготовкой системы измерений (на рисунке не показаны), устанавливаемой на образце.

Устройство со снятой боковой стенкой (на рисунке не показана) рабочего испытательного отсека 2 устанавливается на неподвижном захвате 14 испытательной машины таким образом, чтобы образец 8 проходил через прорези 15 в верхней и 16 в нижней стенках корпуса.

Провода системы измерений, установленной на образце (на рисунке не показано), выводятся наружу через вывод 17 в стенке корпуса. Проводится контроль состояния системы управления температурным режимом.

В отсек охлаждения 3 помещается хладоагент 9 в виде твердой углекислоты с температурой порядка -70°C. Включается вентилятор 10 и проверяется циркуляция воздуха между отсеками 2 и 3 камеры 1.

Все отсеки камеры закрываются крышками (на рисунке не показаны), и включается охлаждение (вентилятор 10). В системе управления температурным режимом устанавливаются верхнее и нижнее отклонения от номинальной испытательной температуры.

После достижения номинального значения заданной температуры включается испытательная машина в соответствии с реализуемой программой испытаний.

В процессе испытаний управляющий компьютер 12 обеспечивает поддержание температуры в пределах заданного диапазона путем периодического включения и выключения вентилятора 10. Рабочий запас хладоагента 9 выбирается таким образом, чтобы обеспечить непрерывную работу в течение рабочей смены или в течение времени проведения более кратковременных испытаний.

Предлагаемое автоматизированное устройство для охлаждения образцов в процессе проведения длительных усталостных испытаний сварных образцов при низких температурах позволяет обеспечить проведение усталостных испытаний сварных образцов при их циклическом растяжении в условиях, максимально приближенных к натурным, путем глубокого охлаждения испытуемых образцов в воздушной среде, что его выгодно отличает от прототипа.

1. Автоматизированное устройство для охлаждения образцов в процессе проведения длительных усталостных испытаний сварных образцов при низких температурах, включающее камеру, силовой блок для нагружения испытуемого образца, размещенного внутри корпуса камеры, источник охлаждающей среды со средством подачи последней в камеру и систему контроля температуры в камере, отличающееся тем, что корпус камеры разделен на два отсека перегородкой, имеющей зазоры в верхней и нижней частях камеры, в одном из которых размещен источник охлаждающей среды - хладоагент в виде твердой углекислоты, а другой предназначен для размещения испытуемого образца, при этом силовой блок для нагружения испытуемого образца выполнен в виде механизма, создающего растягивающее циклическое усилие на образец, причем средство подачи охлаждающей среды в виде холодного воздуха из отсека с хладоагентом в отсек с испытуемым образцом выполнено в виде принудительного нагнетателя воздуха, размещенного в отсеке с хладоагентом, а система контроля температуры в отсеке камеры с образцом представляет собой размещенные в упомянутом отсеке датчики температуры, связанные с внешним управляющим компьютером, которым оснащено устройство.

2. Автоматизированное устройство по п.1, отличающееся тем, что в качестве силового блока для нагружения испытуемого образца использована испытательная машина с пульсатором типа марки МУП-50.

3. Автоматизированное устройство по п.1, отличающееся тем, что в качестве принудительного нагнетателя холодного воздуха из отсека с твердой углекислотой для охлаждения испытуемого образца использован воздушный вентилятор.

4. Автоматизированное устройство по п.1, отличающееся тем, что корпус камеры выполнен с теплоизоляцией.



 

Похожие патенты:

Изобретение относится к области компьютерных сетей. .

Изобретение относится к испытательной технике. .

Изобретение относится к измерительной технике и предназначено для использования при определении прочности образцов из бетона. .

Изобретение относится к области исследования гелеобразных продуктов. .

Изобретение относится к области измерительной техники и предназначено для измерения скорости распространения фронта трещины в магистральном газопроводе при его испытании на протяженное разрушение.

Изобретение относится к испытательной технике, к испытаниям на прочность. .

Изобретение относится к ротору машины для превращения кинетической энергии потока в механическую энергию, который в раскрытом состоянии имеет наблюдаемую снаружи контрольную зону, в которой в процессе работы машины возникает относительно некритичная нагрузка, и который в раскрытом состоянии имеет ненаблюдаемую снаружи контрольную зону, в которой в процессе работы машины возникает относительно критичная нагрузка, с расположенным в контрольной зоне заданным ослабленным участком, который выполнен в виде насечки.

Изобретение относится к испытательной технике, предназначенной для моделирования физических процессов в нагруженном массиве горных пород в лабораторных условиях.

Изобретение относится к контрольно-измерительной технике, в частности, крыла самолета и может быть использовано для контроля прочностных свойств путем замера вибраций консоли крыла непосредственно в полете.

Изобретение относится к машинам для механических испытаний материалов на сжатие и изгиб, в частности к прессам. .

Изобретение относится к устройствам для исследования прочностных свойств конструкций, в частности крыла воздушного судна, и может быть использовано для контроля его прочности путем замера вибраций консоли крыла непосредственно в полете

Изобретение относится к области измерительной техники и предназначено для определения прочности бетонных и железобетонных конструкций

Изобретение относится к области измерительной техники и предназначено для использования при определении прочности бетонных и железобетонных конструкций. Сущность: осуществляют крепление прибора с заданием направления приложения нагрузки к скалывающему элементу под углом к поверхности участка измерения. Прикладывают нагрузку от силового цилиндра к скалывающему элементу с заданной скоростью до момента скола ребра. Фиксируют величину прикладываемого усилия и определяют прочность бетона. Усилие от силового цилиндра прикладывают непосредственно к скалывающему элементу, при этом заданное направление приложения нагрузки совмещено с осью силового цилиндра. Технический результат: повышение точности определения прочности бетона. 2 ил.

Изобретение относится к области испытательной техники и может быть использовано для проведения механических испытаний материала, в частности испытаний на растяжение и ползучесть образцов в канале ядерного реактора. Устройство содержит узел фиксации образца, узел создания и регулирования нагрузки, узел контроля за изменением параметров образца. Узел создания и регулирования нагрузки выполнен в виде сильфона, жестко связанного вверху с длинной гибкой трубой, которая связана с внешним источником подачи газа, а дно сильфона герметично закрыто. Узел фиксации образца расположен вне сильфона и состоит из двух частей: верхней и нижней, каждая из которых содержит первый и второй элементы для закрепления образца, жестко связанные с соответствующей тягой. Первый элемент для закрепления образца в верхней его части через первую тягу жестко связан с наружной стороной верха сильфона, а второй элемент для закрепления образца в нижней части через вторую тягу жестко связан с наружной стороной дна сильфона. Узел контроля за изменением параметров образца закреплен на тягах между первым и вторым элементом для закрепления образца. Расстояние между дном сильфона и первым элементом для закрепления образца превышает возможное растяжение образца под максимальной нагрузкой. Технический результат: расширение области испытания образцов. 1 з.п. ф-лы, 2 ил.

Использование: заявляемое изобретение относится к области специального испытательного оборудования, предназначенного для испытания изделий, содержащих взрывчатые материалы (ВМ), на стойкость к воздействию ударных нагрузок на копровых стендах. Сущность изобретения: устройство для испытания изделий, содержащих взрывчатые материалы, находящихся в зоне обработки, управляемое из отделенной от зоны обработки перегородкой операционной зоны, включает в себя наковальню, молот с расположенным на нем испытуемым изделием, захватное приспособление, посредством которого имеется возможность подъема-спуска молота через трос, связанный с электродвигателем, пульт управления которого находится в операционной зоне, и два малых троса, одни концы которых закреплены на захватном приспособлении, другие соединены с тросом для ручного дистанционного управления из операционной зоны. Устройство снабжено основанием, на котором закреплены электродвигатель, молот, блок вращения троса, трос и захватное приспособление. На наковальне закреплены два блока вращения малых тросов. Перегородка снабжена смотровым окном. Молот снабжен петлей, а захватное приспособление выполнено в виде двух пальцев, захватывающих петлю. Технический результат: простота конструкции, обеспечение безопасности персонала при проведении опасных для жизни и здоровья работ. 4 з.п. ф-лы, 3 ил.

Изобретение относится к строительству, в частности к контролю уплотнения насыпных строительных грунтов. Устройство автоматического управления исполнительным механизмом рабочего органа грунтоуплотняющей машины состоит из акселерометра, усилителя, полосового фильтра, усилителя с регулируемым коэффициентом усиления, фильтра первой гармоники, преобразователя частоты в аналоговый сигнал, алгебраического сумматора, задатчика степени уплотнения грунта, аналого-цифрового преобразователя, компаратора, триггера, формирователя импульсов, блока памяти. Устройство снабжено преобразователями контроля числа проходов машины, скорости ее перемещения, силы и частоты удара рабочего органа, частоты оборотов кривошипного механизма, входным и выходным нормализаторами для связи с объектом управления, бортовым микропроцессорным контроллером с программным обеспечением, регулируемым по нескольким оптимальным параметрам исполнительным механизмом. Первичные преобразователи через входной нормализатор сигналов электрически подключены к «Входу 1» микропроцессорного контроллера, на «Вход 2» которого подается сигнал от анализатора сравнения, а с «Выхода» через выходной нормализатор формируются команды для управления регулируемым исполнительным механизмом, кинематически сочлененным с рабочим органом машины. Обеспечивается повышение производительности грунтоуплотняющей машины, улучшение качества уплотнения насыпного покрытия. 7 ил.

Изобретение относится к компактному зажимному устройству (50) для трубы, пригодному для использования в установке для гидравлических испытаний под давлением с целью контроля качества трубы, полученной электросваркой методом сопротивления. На неподвижное основание (51) посажено с возможностью подъема и опускания поднимаемое и опускаемое основание (52), включающее в себя находящееся на нем поддерживающее трубу тело (55). В положениях, между которыми заключено поддерживающее трубу тело (55) поднимаемого и опускаемого основания (52), расположены зажимные захваты (56), способные поворачиваться. В поднимаемом и опускаемом основании (52) предусмотрен корпус (58) привода захватов для независимого подъема и опускания поднимаемого и опускаемого основания (52). Противоположные боковые участки корпуса (58) привода захватов соединены с противоположными зажимными захватами (56) посредством звеньев (59) так, что могут поворачивать зажимные захваты (56) в направлениях смыкания путем опускания относительно поднимаемого и опускаемого основания (52). На неподвижное основание (51) установлены и первый приводной механизм (53), предназначенный для привода поднимаемого и опускаемого основания (52) с целью подъема и опускания, и второй корпус (54) привода, предназначенный для привода корпуса (58) привода захватов с целью подъема и опускания. Технический результат - повышение компактности и легкости конструкции с обеспечением ее надежности. 2 н. и 10 з.п. ф-лы, 27 ил.

Изобретение относится к устройствам для испытания спасательного оборудования и снаряжения. Устройство содержит основное устройство в виде трубы диаметром не менее 300 миллиметров со съемными креплениями к поверхности, имеющее 4 независимых места на основном устройстве, в том числе ролик и крепление для зацепления спасательных веревок длиной 30 и 50 метров, рукавных задержек, пожарных поясов, карабинов и два отдельных крепления, одно из которых предназначено для испытания спасательных веревок длиной 30 и 50 метров, состоящее из опорной плиты, малой опорной плиты, квадратного металлического стержня, 2-х креплений - Ушко, закрепленных на металлическом стержне, и косынки, а второе - для испытания пожарных поясов, карабинов и рукавных задержек, состоящее из металлического листа, крепления в виде ушка и уголка. Устройство имеет 2 рабочих направления для испытания и возможность съемного крепления на горизонтальной или вертикальной поверхностях. Технический результат: возможность создания недорогого, простого в изготовлении и надежного в эксплуатации устройства для испытания спасательного оборудования и пожарного снаряжения. 3 з.п. ф-лы, 8 ил.

Изобретение относится к строительству и может быть использовано для изучения водопроницаемости геомембраны и стыков ее полотнищ. Устройство для испытания стыков полотнищ геомембраны на водопроницаемость включает емкость с герметично закрывающейся крышкой (2) и эластичной диафрагмой (4). Емкость снабжена герметично закрывающимся днищем (3) сферической формы, заполненным сыпучим водопроницаемым материалом (9), обладающим известной деформативностью, определяющей значения растягивающих напряжений в стыке элементов геомембраны (11, 12). Применение изобретения повышает достоверность результатов испытаний на водопроницаемость стыков геомембраны. 2 ил.

Изобретение относится к области неразрушающего контроля материалов и изделий и может быть использовано в машиностроительной отрасли при сборке узлов и деталей корпусных изделий и оперативном контроле остаточной прочности крепежных элементов. Устройство состоит из стержня, вставленного в сквозное отверстие, выполненное параллельно оси шпильки или болта, либо в паз, прорезанный вдоль шпильки снаружи на глубину, обеспечивающую заглубление стержня в тело шпильки (болта) дальше внутреннего диаметра резьбы, причем один конец стержня закреплен относительно одного края отверстия или паза (возможен резьбовой конец, закрепленный законтренными гайками), а второй выступающий конец стержня изогнут под углом 90° и в исходном состоянии прилегает к торцу шпильки (болта). Оценка прочности шпильки (болта) выполняется по величине смещения незакрепленного конца стержня, являющегося индикатором растяжения, относительно торца шпильки (болта) на угол α, предельное значение которого устанавливают на основе растяжения шпильки (болта) до разрушения на разрывной машине, прикладывая через гайки шпильки (или головку болта и гайку) нагрузку при расстоянии между гайками на шпильке или расстоянии между головкой болта и гайкой, равном суммарной толщине соединяемых фланцев и величине зазора между ними в изделии. Технический результат: оперативный контроль остаточной прочности шпилек (болтов) во фланцевых соединениях трубопроводов и задвижек, позволяющий уменьшить вероятность возникновения техногенных катастроф и снизить расходы на их предотвращение и ликвидацию. 3 з.п. ф-лы, 4 ил.
Наверх