Способ производства горячекатаной канатной катанки


 


Владельцы патента RU 2457911:

Открытое Акционерное Общество "Магнитогорский металлургический комбинат" (RU)

Изобретение предназначено для повышения потребительских свойств горячекатаного мелкосортного проката, в частности канатной катанки. Способ включает горячую прокатку металла, его охлаждение и смотку в бунты с заданными температурами на отдельных операциях производства. Получение оптимальных соотношений между прочностными и пластическими свойствами катанки обеспечивается за счет того, что прокатывают сталь, содержащую 0,58…0,89 мас.% углерода, 0,45…0,66% марганца, 0,1…0,25% кремния и другие элементы, с углеродным эквивалентом Сэ=0,67…0,93, температуру перед черновой группой клетей принимают из соотношения: tчер=(958,0…957,93)-3,91δ+0,06σв, температуру после участка водяного охлаждения toxл=(706,48…706,40)+96,9Cэ+2,57δ, а температуру смотки - tсм=(236,16…236,15)+2,17δ+46,09Сэ, Сэ=0,83[С]+0,36[Si]+0,18[Mn]+0,31[S]+0,32[P]+0,38[A1]+0,19[Cr]+0,17[Ni]+0,16[Сu], где [С], [Si], [Mn], [Cr], [Ni], [S], [P], [Al], [Сu] - содержание в стали соответственно: углерода, кремния, марганца, хрома, никеля, серы, фосфора, алюминия и меди, мас.%; σв - временное сопротивление деформации и δ - относительное удлинение. 1 пр.

 

Изобретение относится к прокатному производству и может быть использовано при изготовлении горячекатаного мелкосортного проката, преимущественно канатной катанки.

Технология производства мелкосортного проката, в частности канатной катанки (длинномерный прокат с круглой формой поперечного сечения, используемый в качестве исходного материала для производства канатной проволоки), достаточно подробно описана, например, в книге П.И.Полухин и др. «Прокатное производство», М.: Металлургия, 1982, с.316-328.

Известен способ производства высокопрочной стальной катанки, при котором она охлаждается до температуры окружающей среды, затем выдерживается в печи с жидким расплавом при температурах 300°…600°С и далее снова нагревается до 450°…600°С, что обеспечивает высокую прочность катанки при удовлетворительной ее пластичности (см. японская заявка №6462424, кл. C27D 9/52, опубл. 08.03.89 г.). Однако этот способ малопригоден для производства канатной катанки.

Наиболее близким аналогом к заявляемому объекту является технология производства катанки на непрерывном стане «250» ЗСМК, описанная в справочнике под ред. В.И.Зюзина и А.В.Третьякова «Технология прокатного производства», кн.1, М.: Металлургия, 1991, с.388-395.

Эта технология включает горячую прокатку металла, его охлаждение и смотку в бунты и характеризуется нагревом металла перед прокаткой в двухзонных рекуперативных печах, имеющих испарительное и водяное охлаждение; прокатку ведут в 37 двухвалковых клетях с применением двухстадийного ускоренного и регулируемого охлаждения металла и последующей смоткой его в бунты. Недостатком известной технологии является неопределенность температур металла на определенных стадиях процесса (например, перед черновой группой клетей, после участка водяного охлаждения и при смотке), что затрудняет получение катанки с заданными механическими характеристиками, в частности, для производства канатов.

Технической задачей настоящего изобретения является получение горячекатаного мелкосортного проката, в частности канатной катанки, с заданными механическими свойствами, что повышает выход проката требуемых свойств и сокращает производственные затраты в последующем метизном переделе (дополнительная термообработка, травление и подготовка поверхности используемой заготовки).

Для решения этой задачи предлагаемый способ производства горячекатаной канатной катанки включает горячую прокатку металла, его охлаждение и смотку в бунты с заданными температурами на отдельных операциях производства при прокатке стали, содержащей 0,58…0,89 мас.% углерода, 0,45…0,66% марганца, 0,1…0,25% кремния и другие элементы, с углеродным эквивалентом Сэ=0,67…0,93, температуру перед черновой группой клетей принимают из соотношения: tчер=(958,0…957,93)-3,91δ+0,06σв, температуру после участка водяного охлаждения tохл=(706,48…706,40)+96,9Сэ+2,57δ, а температуру смотки - tсм=(236,16…236,15)+2,17δ+46,09Сэ, где Сэ=0,83[С]+0,36[Si]+0,18[Mn]+0,31[S]+0,32[P]+0,38[Al]+0,19[Cr]+0,17[Ni]+0,16[Сu] и [С], [Si], [Mn], [Cr], [Ni], [S], [P], [Al], [Сu] - содержание в стали соответственно: углерода, кремния, марганца, хрома, никеля, серы, фосфора, алюминия и меди, мас.%; σв - временное сопротивление деформации и δ - ее относительное удлинение.

Приведенные температурные параметры прокатки получены опытным путем и являются эмпирическими.

Сущность заявляемого технического решения заключается в оптимизации температур отдельных операций производства, что обеспечивает требуемые механические характеристики канатной катанки.

Опытную проверку предлагаемого способа производили на мелкосортно -проволочном стане «170» ОАО «Магнитогорский металлургический комбинат». С этой целью при горячей прокатке стали, содержащей 0,58…0,89 мас.% углерода, 0,45…0,66% марганца, 0,1…0,25% кремния и другие элементы, с углеродным эквивалентом Сэ=0,67…0,93, на отдельных этапах производства варьировали температуры перед черновой группой клетей tчер, после участка водяного охлаждения tохл и смотки tсм, оценивая результаты по выходу проката по ТУ 14-1-5317-95.

Наилучшие результаты (максимальный выход проката требуемых свойств в пределах 97,9…99,2%) получен с применением используемой технологии. Отклонения от рекомендуемых величин tчep, tохл и tсм ухудшали достигнутые показатели.

Так, например, при снижении значений tчер, tохл и tсм выход годного проката не превысил 96,0%, в основном - из-за несоответствия проката пластическим свойствам по ТУ 14-1-5317-95. Увеличение значений tчер, tохл и tсм более рекомендуемых величин не дало выхода требуемого качества проката более 97,1%, в основном - из-за несоответствия части продукции прочностным свойствам по ТУ 14-1-5317-95.

Горячая прокатка канатной катанки по технологии, выбранной в качестве ближайшего аналога (см. выше), дала выход требуемой продукции в пределах 84…88%. Таким образом, опытная проверка подтвердила приемлемость найденного технического решения для достижения поставленной цели и его преимущество перед известной технологией.

Технико-экономические исследования показали, что использование настоящего изобретения при производстве горячекатаной канатной катанки сократит потери производства (за счет увеличения выхода годного проката требуемого качества) не менее чем на 12% при сохранении общего объема готового проката.

Пример конкретного выполнения

Качественная конструкционная сталь, содержащая 0,71 вес.% углерода, 0,63% марганца, 0,21% кремния, 0,02% хрома, 0,03% никеля, 0,013% серы, 0,014% фосфора, 0,04% меди и 0,003% алюминия, предназначенная для производства канатной катанки, с углеродным эквивалентом Сэ=0,83[С]+0,36[Si]+0,18[Mn]+0,31[S]+0,32[P]+0,38[Al]+0,19[Cr]+0,17[Ni]+0,16[Сu]=0,83·0,71+0,36·0,21+0,18·0,63+0,31·0,013+0,32·0,014+0,38·0,003+0,19·0,02+0,17·0,03+0,16·0,04=0,80 и заданными: временным сопротивлением деформации σв=960 Н/мм2 и относительным удлинением δ=12%.

Температурный режим прокатки:

tчер=(958,0…957,93)-3,91δ+0,06σв=(958,0…957,93)-3,91·12+0,06·960=968,68…968,61°С.

tохл=(706,48…706,40)+96,9Сэ+2,57δ=(706,48…706,40)+96,9·0,8+2,57·12=814,84…814,76°C.

tсм=(236,16…236,15)+2,17δ+46,09Сэ=(236,16…236,15)+2,17·12+46,09·0,8=299,07…299,06°C.

Допускаемые отклонения фактических величин температур от расчетных ±5 град.

Выход годного проката - 98,9%.

Способ производства горячекатаной канатной катанки из стали, содержащей 0,58…0,89 мас.% углерода, 0,45…0,66% марганца, 0,1…0,25% кремния, с углеродным эквивалентом Сэ=0,67…0,93, включающий горячую прокатку металла, водяное охлаждение и смотку в бунты с заданными температурами на отдельных операциях производства, причем при горячей прокатке температуру стали перед черновой группой клетей устанавливают из соотношения: tчep=(958,0…957,93)-3,91δ+0,06σв, температуру после участка водяного охлаждения toxл=(706,48…706,40)+96,9Cэ+2,57δ, а температуру смотки t=(236,16…236,15)+2,17δ+46,09Cэ, при этом Cэ=0,83[C]+0,36[Si]+0,18[Mn]+0,31[S]+0,32[P]+0,38[Al]+0,19[Cr]+0,17[Ni]+0,16[Сu], где [С], [Si], [Mn], [Cr], [Ni], [S], [P], [Al], [Cu] - содержание элементов в стали, мас.%; σв - временное сопротивление деформации, н/мм2; а δ - относительное удлинение, %.



 

Похожие патенты:

Изобретение относится к области металлургического машиностроения и может быть использовано при создании рабочих клетей сортовых прокатных станов. .

Изобретение относится к области металлургии, в частности к прокатному производству на станах горячей прокатки. .

Изобретение относится к прокатным станам для непрерывной прокатки длинномерных изделий. .

Изобретение относится к области обработки металлов давлением, в частности к технологии производства круглого сортового проката в бунтах, например арматуры, на проволочном (мелкосортном) стане.

Изобретение относится к обработке металлов давлением, а именно к прокатному и волочильному производствам, в частности к способам производства проволоки, в том числе с цинковым покрытием.

Изобретение относится к обработке металлов давлением, преимущественно к производству алюминиевой или медной ленты, которая после нанесения на нее изоляции используется в качестве плоского обмоточного электрического проводаЛента, применяемая в производстве катушек электромагнитов и других электротехнических изделий, может быть получена из слитков или бесслитковым методом на обычном оборудовании прокатного цеха.
Изобретение относится к прокатному производству и может быть использовано при прокатке мелкосортных круглых или квадратных профилей. .

Изобретение относится к инструменту для обработки металлов давлением и может быть использовано при прокатке сортовой круглой стали. .

Изобретение относится к прокатному производству и может быть использовано на мелкосортных и проволочных станах с непрерывными группами клетей. .
Изобретение относится к области металлургии, конкретно к сортопрокатному производству, и может быть использовано на станах горячей прокатки стальных сортовых профилей.

Изобретение относится к сортопрокатному производству и может быть использовано при получении сортовых профилей из непрерывно-литых стальных заготовок

Изобретение относится к прокатному производству и может быть использовано для получения катанки в мотках, используемой для волочения в проволоку различного назначения
Изобретение относится к области металлургии, конкретно к производству круглого сортового проката с повышенной обрабатываемостью резанием, используемого для изготовления крепежных изделий. Техническим результатом изобретения является повышение качества и выхода годного круглого сортового проката. Для достижения технического результата непрерывнолитую заготовку получают из стали, содержащей, мас.%: углерод 0,18-0,23, марганец 0,70-1,10, кремний 0,17-0,37, хром 0,40-0,70, никель 0,40-0,70, молибден 0,15-0,25, алюминий 0,002-0,040, сера 0,035-0,040, фосфор не более 0,035, железо и примеси - остальное. Полученную заготовку нагревают до 1150-1270°C, подвергают черновой прокатке, а затем многопроходной чистовой прокатке, при этом в трех последних проходах чистовую прокатку осуществляют в системе калибров «круг - овал - круг» в температурном интервале от 1000-1100°C до 850-950°C с коэффициентом вытяжки в каждом из них 1,10-1,25. 2 табл., 1 пр.

Изобретение относится к области металлургии, а именно к получению высокопрочного, высоковязкого тонкого стального прутка, используемого для получения изделий, требующих высокой прочности и вязкости. Выполняют чистовую прокатку прутка, полученного из стали, имеющей состав: от 0,07% вес. до 0,14% вес. алюминия (Аl), и азот (N), в котором Al:N, где Аl и N означают % вес. каждого элемента, составляет от 15:1 до 25:1 в температурном диапазоне приблизительно от 850°C до 1050°C, охлаждение стали со скоростью, составляющей приблизительно 5°C/сек или менее для получения прутка, в котором сформированы дисперсные нановключения на основе AlN, имеющие размер, равный приблизительно 130 нм или менее. Пруток имеет улучшенные прочность и вязкость, может быть получен с использованием простой композиции легирующих элементов без проведения дополнительной термической обработки. 2 н. и 5 з.п. ф-лы, 8 ил., 2 табл., 1 пр.

Изобретение предназначено для получения длинномерных ромбических профилей из легких сплавов, используемых для изготовления деталей фюзеляжа летательных аппаратов. Способ включает нагрев заготовок прямоугольного сечения и их обжатие в валках с ромбическим калибром в положении «плашмя». Повышение механических свойств ромбических профилей и стабильность их формы при выходе из валков обеспечивается за счет того, что перед обжатием определяют степень деформации сдвига в момент разрушения образца из того же металла при его испытании на кручение, толщину и ширину заготовки прямоугольного сечения определяют по математическим зависимостям, а в процессе обжатия заготовки регламентируют степень деформации сдвига металла заготовки. 2 ил., 3 пр.
Наверх