Способ получения синтетического диоксида кремния высокой чистоты


 


Владельцы патента RU 2458006:

Щербаков Дмитрий Дмитриевич (RU)

Изобретение относится к области химической технологии неорганических веществ. Способ получения синтетического диоксида кремния высокой чистоты включает взаимодействие исходного кварцсодержащего сырья с фторидом, гидродифторидом аммония или их смесью с получением кремнефторида аммония и фторидов примесных элементов. Полученный кремнефторид аммония очищают от примесей металлов сублимационной перегонкой. Раствор кремнефторида аммония в воде очищают от примесей неметаллов экстракцией. Затем аммиачной водой осаждают из раствора кремнефторида аммония синтетический диоксид кремния. Обеспечивается получение синтетического диоксида кремния высокой чистоты. 2 пр.

 

Изобретение относится к области химической технологии неорганических веществ и может быть использовано в случаях, когда необходимо получить синтетический диоксид кремния высокой чистоты.

Известен способ очистки диоксида кремния, патент JP 62153111, взаимодействием исходного кремнезема со смесью фтористоводородной кислоты и серной кислоты, осаждением из раствора силикагеля аммиачной водой и отделением силикагеля от раствора. Недостатком способа является образование большого количества сточных вод, которые необходимо утилизировать.

Известен способ получения синтетического диоксида кремния, патент US 5458864, взаимодействием исходного кварцсодержащего сырья с раствором фторида аммония, гидродифторида аммония или их смеси, отделением кремнефторида аммония от непрореагировавшего кремнезема и осаждением синтетического диоксида кремния и взаимодействием раствора кремнефтористого аммония с аммиачной водой. Недостатком способа является неполная переработка исходного кварцсодержащего сырья и, как следствие, образование твердых отходов.

Известен способ получения высокочистого синтетического диоксида кремния, патент US 1859998, прототип, взаимодействием кварцсодержащего сырья с фторидом аммония при нагревании, растворением кремнефторида аммония в воде, обработкой раствора аммиачной водой с последующим отделением синтетического диоксида кремния. Недостатком способа является загрязненность конечного продукта железом, титаном, бором, фосфором и др. элементами.

Задачей настоящего изобретения является разработка промышленного способа получения синтетического диоксида кремния высокой чистоты.

Поставленная задача решается тем, что кварцсодержащее сырье смешивают с фторидом, гидродифторидом аммония или их смесью. Фторид, гидродифторид аммония или их смесь берут в избытке до 20% от стехиометрического количества, необходимого для образования кремнефторида аммония:

SiO2+6NH4F=(NH4)2SiF6+4NH3+2H2O

Процесс ведут в интервале температур 20-240°C.

Кремнефторид аммония сублимируют в интервале температур 320-350°C с целью очистки от примеси металлов, которые остаются в твердом виде, кремнефторид аммония улавливают и десублимируют.

Очищенный от примеси металлов кремнефторид аммония растворяют в воде, получая насыщенный раствор. Раствор очищают от примеси неметаллов экстракцией на бриллиантовом зеленом C29H37N2O4S и бензоле C6H6. Неметаллы переходят в органическую фазу, в растворе остается кремнефторид аммония. Проводят разделение органической и водных фаз.

Раствор, содержащий очищенный от примесей кремнефторид аммония, обрабатывают стехиометрическим количеством аммиачной воды, необходимой для образования синтетического диоксида кремния:

(NH4)2SiF6+4NH4OH=SiO2+6NH4F+2H2O

Твердый диоксид кремния отделяют от раствора фторида аммония, сушат и прокаливают.

Раствор, содержащий фторид аммония, можно упарить с целью получения твердого фторида, гидродифторида аммония или их смеси, и использовать для переработки следующей партии кварцсодержащего сырья.

Техническим результатом изобретения является технология получения синтетического диоксида кремния, очищенного от примесей металлов и неметаллов.

Пример 1. Навеску кварца (чистотой 98,8% по SiO2) массой 50 г смешивают с 156,75 г гидродифторида аммония и выдерживают при 150°C до прекращения выделения газообразных продуктов реакции. Полученный продукт нагревают до 340°C и выдерживают при этой температуре до полного удаления кремнефторида аммония в виде газа. Газообразный кремнефторид аммония десублимируют и растворяют в 690 мл воды. Из раствора кремнефторида аммония удаляют примеси неметаллов экстракцией на бриллиантовом зеленом C29H37N2O4S и бензоле C6H6. Очищенный раствор кремнефторида аммония смешивают с 240 г 25% аммиачной воды. Твердый продукт реакции отфильтровывают, промывают водой и сушат при 110°C. Масса полученного синтетического диоксида кремния составила 49,3996 г.

Пример 2. Отличается от Примера 1 тем, что кварц смешивали с 203,5 г фторида аммония. Масса полученного синтетического диоксида кремния составила 49,3997 г.

Метод получения синтетического диоксида кремния высокой чистоты, включающий взаимодействие кварцсодержащего сырья с фторидами аммония при нагревании, растворение кремнефторида аммония в воде, обработку раствора аммиачной водой с последующим отделением синтетического диоксида кремния, отличающийся тем, что взаимодействие исходного кварцсодержащего сырья проводят с фторидом, гидродифторидом аммония или их смесью, полученный кремнефторид аммония очищают от примесей металлов сублимационной перегонкой, раствор кремнефторида аммония в воде очищают от примесей неметаллов экстракцией.



 

Похожие патенты:

Изобретение относится к способам очистки отходящих газов от содержащегося в них силана SiH4. .

Изобретение относится к осажденной кремниевой кислоте и способу ее получения. .

Изобретение относится к области промышленной утилизации растительных отходов, преимущественно кремнийсодержащих. .

Изобретение относится к технологии изготовления детали из искусственного кварца для применения в качестве оптического элемента для ArF-литографии, подлежащего облучению лазерным светом, имеющим длину волны 200 нм или короче.

Изобретение относится к области переработки отходов сельскохозяйственного производства, в частности к переработке рисовой шелухи. .

Изобретение относится к области микроэлектроники, а именно к осаждению разных диэлектрических слоев производных кремния в производстве субмикронных СБИС (сверхбольших интегральных схем).

Изобретение относится к области неорганической химии, в частности термосолянокислотной обработки железомагнезиальных серпентинизированных ультраосновных пород для получения двуокиси кремния, хлорида магния, пигмента, а также тонкодисперсного кремнезема, которые могут использоваться в синтезе нанокомпозитных материалов, особых и оптических стекол, в качестве наполнителя в резине и пластмассах, силикагельных сорбентов, носителей катализаторов, формовочного вещества в металлургии, составной части в лакокрасках, пластмассах, линолеуме, эмалях, в высокотемпературных огнестойких красках, в производстве тонкокерамических и огнеупорных веществ, в качестве исходного вещества для кремния, магния и его оксида и т.д.
Изобретение относится к области технологических процессов в области химической промышленности и может быть использовано для получения высокочистого кремнезема. .

Изобретение относится к технологии химической переработки минерального сырья, в частности к способам получения высокодисперсного диоксида кремния - аналога белой сажи, применяемого в качестве минерального наполнителя в отраслях промышленности, использующих высокодисперсные наполнители.

Изобретение относится к области технологии неорганических веществ, в частности к способам переработки отходящих газов, образующихся в процессе получения пирогенного диоксида кремния высокотемпературным гидролизом хлоридов кремния

Изобретение относится к технологии химической переработки минерального сырья, в частности к способам получения высокодисперсного диоксида кремния - аналога белой сажи, применяемого в качестве минерального наполнителя в отраслях промышленности, использующих высокодисперсные наполнители
Изобретение относится к технологии переработки минерального сырья и может быть использовано для получения из аморфного диоксида кремния рисовой шелухи
Изобретение относится к способам обогащения природного кварцевого сырья и может быть использовано для наплава прозрачного кварцевого стекла, применяемого в оптике, светотехнике, химической промышленности и др
Изобретение относится к стабилизированным гидроксонием наночастицам кремниевой кислоты, к составу, полученному из указанной разбавленной суспензии, к порошку, полученному из указанной дегидратированной суспензии, и к препарату или лекарственной форме, полученной из указанной суспензии, составу или порошку и их применению во всех типах применений в области пищевой промышленности, медицины, фармацевтики, косметики

Изобретение относится к области производства высокочистого аморфного диоксида кремния (ДК)

Изобретение может быть использовано для извлечения наночастиц диоксида кремния и углерода из шламов газоочистки электротеримического производства кремния флотацией. Способ включает термообработку техногенного отхода газоочистки электротермического производства кремния при температуре 400-600°С. Полученный термообработанный материал измельчают до крупности частиц не более 10-6 и осуществляют его репульпацию. Полученную суспензию аэрируют в режиме, обеспечивающем образование пузырьков воздуха, сопоставимых с размерами флотируемых частиц, при этом в процессе аэрации подают исходные пузырьки воздуха размером не более 50·10-6 м. Разделение пенного продукта, содержащего углеродные наночастицы, и камерного продукта, содержащего частицы диоксида кремния, ведут в ламинарном режиме истечения пенного продукта на сливе и поддерживают высоту слоя пены не менее 30·10-3 м. Изобретение позволяет выделять из шлама газоочистки электротермического производства кремния углеродные наночастицы и наночастицы диоксида кремния при снижении энергозатрат. 9 з.п. ф-лы, 8 ил., 1 табл., 1 пр.

Изобретение может быть использовано при получении композиционных материалов. Исходные углеродные наноматериалы, например нанотрубки, нанонити или нановолокна, обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°С не менее 20 мин, промывают водой и сушат. Затем пропитывают спиртовым раствором олигоорганогидридсилоксана, например олигоэтилгидридсилоксана или олигометилгидридсилоксана, выпаривают, сушат на воздухе при температуре не более 200°С не менее 20 мин. После этого прокаливают в инертной среде при температуре 600-800°С не менее 20 мин. Полученные углеродные наноматериалы с нанесенным диоксидом кремния имеют высокую стойкость к окислению. 1 з.п. ф-лы, 4 ил., 6 пр.
Изобретение относится к химической промышленности, в частности к производству наполнителей для резиновых смесей при получении резин. Наполнитель резины включает базовый порошок диоксида кремния, углерода, примеси оксидов СаО, К2О, Na2O, MgO, Al2O3 и плакирующего покрытия каучука. Наполнитель имеет состав, мас.%: SiO2(26-98)+С(0,5-66) + примесь Fe2O3(0,2-0,3) + примеси оксидов СаО, К2О, Na2O, MgO, Al2O3 - остальное + сверх 100% каучук (1,2-7,8) и примесь S (0,05-0,23) (в составе SO2, SO3). Базовый порошок получают путем обжига рисовой лузги, он имеет удельную поверхность 150-290 м2/г; диоксид кремния в порошке имеет кристаллическую форму β-кристобалита с размерами кристаллов: диаметр 6-10, длина 100-400 нм; углерод находится в виде углеподобного вещества, угля или сажеподобного вещества в зависимости от температуры обжига. Каучук для плакирования получают осаждением из водно-кислотного экстракта каучуконосов ряда: одуванчик, кок-сагыз, крым-сагыз, тау-сагыз, василек. Наполнитель является природно-гомогенным, непылящим. Резины, полученные с использованием наполнителя, имеют повышенную прочность, пониженный модуль внутреннего трения, пониженные истираемость и температуровыделение при замесе резины. 3 з.п. ф-лы,4 табл.
Наверх