Состав сухой сырьевой смеси для изготовления и производства неавтоклавного газобетона


 


Владельцы патента RU 2460708:

Государственное образовательное учреждение высшего профессионального образования "Тверской государственный технический университет" (RU)

Изобретение относится к производству строительных материалов и изделий из ячеистого бетона, поризованного газом, и может быть использовано при изготовлении изделий, применяемых для строительства и теплоизоляции зданий. Состав сырьевой смеси для изготовления неавтоклавного газобетона включает, мас.%: портландцемент 35,30-49,40, известь 2,60-2,65, алюминиевая пудра 0,06-0,10, хлорид кальция 0,18-0,25, известняк, молотый до удельной поверхности 300-700 м2/кг, 12,40-26,50, вода - остальное. Технический результат - стабилизация процесса поризации газобетонной смеси, улучшение эксплуатационных характеристик газобетона, снижение его себестоимости при упрощении состава смеси. 2 табл., 1 пр.

 

Изобретение относится к производству строительных материалов и изделий из ячеистого бетона, поризованного газом, и может быть использовано при изготовлении изделий, применяемых для строительства и теплоизоляции жилых, административных и промышленных зданий и сооружений.

Известен состав сырьевой смеси для получения газобетона (RU №2255073, кл. С04В 38/02, 27.06.2005), включающий портландцемент, песок, алюминиевую пудру, каустическую соду, воду затворения, при соотношении компонентов, мас.%:

Портландцемент 15-50
Песок 31-42
Алюминиевая пудра 0,10-1,0
Каустическая сода 0,05-0,45
Вода остальное

Недостатком известного состава является повышенный расход наиболее дорогого компонента сырьевой смеси - алюминиевой пудры, что ведет к увеличению себестоимости газобетона. Кроме того, использование в известном составе песка естественной дисперсности может вызывать явления седиментации при приготовлении и укладке газобетонной смеси, что приводит к вариотропности структуры газобетона, увеличению толщины межпоровой перегородки, негативно влияющей на прочностные характеристики, и ведет к увеличению его средней плотности.

Наиболее близким к предлагаемому составу является состав смеси для изготовления неавтоклавного газобетона (RU 2209801, кл. С04В 38/02, 2003), включающий портландцемент, суспензию алюминиевой пудры, известковое молоко, полуводный гипс в виде суспензии в воде в соотношении 1:1,63÷7, микрокремнезем, хлористый кальций, воду затворения при соотношении компонентов, мас.%:

Портландцемент 51-71
Алюминиевая пудра 0,01-0,15
Известь 0,04-0,7
Полуводный гипс 0,1-0,4
Микрокремнезем 0,6-3,5
Хлористый кальций 0,5-3
Вода остальное

Недостатком известного состава является повышенный расход портландцемента - относительно дорогого компонента сырьевой смеси, что ведет к увеличению себестоимости газобетона. Введение в состав газобетонной смеси известкового раствора не обеспечивает достаточной интенсификации процесса поризации (начало процесса наступает не ранее 10 мин после смешения).

Задачей изобретения является разработка состава неавтоклавного газобетона, который может быть использован при изготовлении штучных изделий, применяемых для строительства и теплоизоляции жилых, административных и промышленных зданий и сооружений.

Техническим результатом изобретения является стабилизация процесса поризации газобетонной смеси, улучшение эксплуатационных характеристик газобетона, снижение его себестоимости при упрощении состава смеси.

Поставленная задача и указанный технический результат достигаются тем, что состав сырьевой смеси для изготовления неавтоклавного газобетона, включающий портландцемент, известь, алюминиевую пудру, хлорид кальция и воду, согласно изобретению дополнительно содержит известняк, молотый до удельной поверхности 300÷700 м2/кг при следующем соотношении компонентов, мас.%:

Портландцемент 35,30÷49,40
Известняк 12,40÷26,50
Известь 2,60÷2,65
Алюминиевая пудра 0,06÷0,10
Хлорид кальция 0,18÷0,25
Вода остальное

При содержании в составе неавтоклавного газобетона портландцемента менее 35,3% прочность газобетона - ниже допустимого стандартами уровня, а при содержании портландцемента более 49,4% в газобетоне появляются усадочные деформации, приводящие к снижению прочности и морозостойкости.

При содержании извести менее 2,60% не обеспечивается достаточной щелочности жидкой фазы и эффективного газообразования смеси, а при содержании извести более 2,65% необоснованно снижается прочность газобетона.

При содержании известняка менее 12,4% появляются усадочные деформации, приводящие к снижению прочности и морозостойкости. При содержании известняка более 26,5% прочность газобетона ниже допустимого стандартами уровня. Удельная поверхность известняка менее 300 м2/кг может вызывать явления седиментации при приготовлении и укладке газобетонной смеси, что приводит к вариотропности структуры газобетона, увеличению толщины межпоровой перегородки, что негативно влияет на прочностные характеристики и приводит к увеличению средней плотности материала. Если удельная поверхность известняка более 700 м2/кг, то резко уменьшается подвижность газобетонной смеси и увеличивается средняя плотность газобетона.

При содержании алюминиевой пудры менее 0,06%, газобетон не достигает заданной пористости, что приводит к повышенной средней плотности. При содержании алюминиевой пудры более 0,10% образуется избыточное количество водорода, что приводит к слиянию газовых пузырьков и вырыванию их через поверхность наружу. В результате чего происходит осадка газобетонной смеси.

Хлорид кальция улучшает вспучивание газобетонной смеси, а также способствует ускорению твердения газобетона, что позволяет получать изделия без тепловой обработки. При содержании хлорида кальция менее 0,18% не обеспечивается эффективного ускорения твердения газобетона. При содержании хлорида кальция более 0,25% эффект ускорения твердения уменьшается.

Состав сырьевой смеси для изготовления неавтоклавного газобетона иллюстрируется примером.

Пример 1.

Для получения неавтоклавного газобетона использовали портландцемент, известняк, известь, предпочтительно негашеную, алюминиевую пудру, хлорид кальция. В таблице 1 приведены конкретные составы для получения неавтоклавного газобетона.

Все сухие компоненты смеси взвешивали в необходимом количестве и смешивали. Предварительно высушивали и размалывали известняк до удельной поверхности 300, 500 и 700 м2/кг. Полученную смесь помещали в воду с температурой 60°С и перемешивали в течение 1 мин. Затем в смесь добавляли заранее изготовленную алюминиевую суспензию и перемешивали еще 1 мин. Полученную газобетонную смесь заливали в формы 10×10×10 см. После 3 часовой выдержки срезали «горбушку». Распалубку форм осуществляли через 48 часов, после чего образцы накрывали полиэтиленовой пленкой, где они твердели при температуре 20±2°С в течение 26 суток. В дальнейшем образцы высушивали до постоянной массы и подвергали физико-механическим испытаниям. Результаты испытаний приведены в таблице 2. Остальные примеры приготовления состава для получения неавтоклавного газобетона осуществлялись аналогично примеру 1, данные которых представлены в таблицах 1 и 2.

Таблица 1
№ п/п Примеры составов Содержание компонентов, мас.%
Цемент Известняк Хлорид кальция Известь Алюм. пудра Вода
1 Удельная поверхность известняка 300 м2/кг
1.1 Состав №1 35,3 26,5 0,18 2,60 0,10 35,32
1.2 Состав №2 41,2 20,6 0,21 2,63 0,08 35,28
1.3 Состав №3 49,4 12,4 0,25 2,65 0,06 35,24
2 Удельная поверхность известняка 500 м2/кг
2.1 Состав №4 35,3 26,5 0,18 2,60 0,10 35,32
2.2 Состав №5 41,2 20,6 0,21 2,63 0,08 35,28
2.3 Состав №6 49,4 12,4 0,25 2,65 0,06 35,24
3 Удельная поверхность известняка 700 м2/кг
3.1 Состав №7 35,3 26,5 0,18 2,60 0,10 35,32
3.2 Состав №8 41,2 20,6 0,21 2,63 0,08 35,28
3.3 Состав №9 49,4 12,4 0,25 2,65 0,06 35,24
Таблица 2
Номер состава Средняя плотность, кг/м3 Предел прочности на сжатие в возрасте 28 суток, МПа Коэффициент качества
Состав №1 455 0,7 1,5
Состав №2 470 1,5 3,2
Состав №3 460 1,5 3,3
Состав №4 430 0,9 2,1
Состав №5 460 1,5 3,3
Состав №6 505 1,9 3,8
Состав №7 440 0,8 1,8
Состав №8 465 1,7 3,7
Состав №9 495 1,2 2,4

Совместное присутствие указанных веществ в смеси предлагаемого состава обеспечивает получение газобетонных изделий при средней плотности до 505 кг/м3 с прочностью до 1,9 МПа, которая превышает прочностные характеристики газобетонных изделий неавтоклавного способа твердения известных составов, а также указанных в ГОСТ 25485-89 «Бетоны ячеистые. Технические условия». Использование отходов дробления известняка, снижение расхода цемента и уменьшение компонентов состава (упрощение), по сравнению с прототипом, способствует уменьшению себестоимости газобетона на 30%.

Состав сырьевой смеси для изготовления неавтоклавного газобетона, включающий портландцемент, известь, алюминиевую пудру, хлорид кальция и воду, отличающийся тем, что он дополнительно содержит известняк, молотый до удельной поверхности 300-700 м2/кг, при следующем соотношении компонентов, мас.%:

портландцемент 35,30-49,40
известняк 12,40-26,50
известь 2,60-2,65
алюминиевая пудра 0,06-0,10
хлорид кальция 0,18-0,25
вода остальное


 

Похожие патенты:

Изобретение относится к гибридному материалу из вспененного полимера и неорганического связующего, способ его получения и применение. .
Изобретение относится к искусственной породе и может найти применение в промышленности строительных материалов. .
Изобретение относится к производству пористых силикатных пеноматериалов, а именно стеклокристаллических пеноматериалов, которые могут быть использованы в строительной, радиотехнической и медицинской отраслях народного хозяйства.
Изобретение относится к промышленности строительных материалов, в частности к производству ячеистых бетонов, используемых в малоэтажном строительстве. .

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления теплоизоляционных и конструкционно-теплоизоляционных бетонов автоклавного твердения различного назначения.
Изобретение относится к области строительства и металлургии. .
Изобретение относится к строительным материалам, в частности к составу сырьевой смеси для приготовления легкого поризованного бетона, применяемого в производстве конструкционно-теплоизоляционных изделий в виде панелей, ограждающих конструкций.

Изобретение относится к получению пористого керамического материала в основном для термоизоляции. .

Изобретение относится к промышленности строительных материалов, а именно к составам и способам изготовления теплоизоляционных ячеистых материалов. .
Изобретение относится к области производства строительных материалов, в частности к пеногипсовым композициям, используемым для изготовления легких теплоизоляционных материалов с пористой структурой
Изобретение относится к производству пористых заполнителей для бетонов

Изобретение относится к области строительства и может быть использовано при производстве изделий из ячеистого бетона

Изобретение относится к промышленности строительных материалов, а именно к производству ячеистых бетонов
Изобретение относится к области строительных материалов, а именно к области поризации гипсовых смесей, и может быть использовано в промышленности строительных материалов
Изобретение относится к производству теплоизоляционных ячеистых строительных материалов
Изобретение относится к промышленности строительных материалов, в частности к производству ячеистых бетонов, используемых в малоэтажном строительстве

Изобретение относится к составам сырьевых смесей для изготовления керамических теплоизоляционных материалов и может быть использовано для производства теплоизоляционной керамики при строительстве жилых, гражданских и промышленных зданий

Изобретение относится к строительным материалам, а именно к составам смесей для изготовления морозостойких стеновых камней и монолитных стен
Изобретение относится к производству строительных материалов и может быть использовано при изготовлении искусственных пористых заполнителей для легких бетонов и теплоизоляционных засыпок. Сырьевая смесь для получения пористого заполнителя, включающая кремнеземсодержащую горную породу и газообразователь, в качестве газообразователя она содержит смесь оксида алюминия и карбида кремния при следующем соотношении компонентов, мас.%: кремнеземсодержащая горная порода 95,0-96,0, оксид алюминия 3,0-4,9, карбид кремния 0,1-1,0. Технический результат - повышение прочности пористого заполнителя путем уменьшения спекания заполнителя при снижении его водопоглощения и теплопроводности. 4 пр., 1 табл.
Наверх