Регистрирующая кювета для фототермоакустического газоанализатора

Изобретение относится к измерительной технике и может быть использовано для количественного определения энергии падающего ИК-излучения в составе фототермоакустического газоанализатора. Кювета состоит из герметичной камеры, наполненной газом, поглощающим оптическое излучение. На противоположных торцах камеры расположены на одной оптической оси входное и выходное окна, которые наклонены к оптической оси под углом 45°. На боковой стороне камеры расположены акустически согласованные между собой излучатель и приемник ультразвуковых колебаний так, что вдоль оптической оси происходит совмещение оптического и акустического излучения. Изобретение обеспечивает повышение чувствительности за счет увеличения длины оптического пути и области взаимодействия акустического и оптического лучей. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в составе фототермоакустического газоанализатора для количественного определения энергии падающего ИК-излучения.

Известны регистрирующие кюветы, использующие эффект изменения давления заключенного в них газа при поглощении этим газом падающего на него оптического излучения (Д.Л.Бронштейн, Н.Н.Александров. Современные средства измерения загрязнения атмосферы. Л.: Гидрометеоиздат, 1989, гл.3, с.147).

Основным их недостатком является низкая защищенность от влияния акустических и вибрационных помех, обусловленная использованием в качестве чувствительного элемента оптико-пневматических приемников акустического микрофона, что приводит к низкой чувствительности кювет.

Наиболее близкой по принципу действия является регистрирующая кювета в составе фототермоакустического газоанализатора (Патент РФ №2207546, бюллетень изобретений 2003, №18. фиг.1, №№4, 8).

Регистрирующая кювета для фототермоакустического газоанализатора состоит из герметичной камеры, наполненной поглощающим оптическое излучение газом. Кювета имеет входное и выходное окна для ввода и вывода оптического излучения, расположенные на одной оптической оси, на противоположных сторонах камеры, и, акустически согласованные между собой, излучатель и приемник ультразвуковых колебаний.

Основным недостатком известной кюветы, регистрирующей количество поглощенной энергии, является низкая чувствительность, обусловленная малой областью взаимодействия ультразвукового луча с областью нагрева газа, определяемой зоной поглощения оптического излучения. В свою очередь, малая зона взаимодействия обусловлена ортогональным совмещением оптического и акустического лучей. Согласно известной зависимости ослабления оптического излучения I=I0e-kl, величина поглощенной энергии зависит от l (длины взаимодействия оптического излучения со средой, в которой это излучение распространяется). Соответственно, в случае ортогонального совмещения эта длина ограничивается диаметром акустического луча, что свидетельствует о малой величине поглощенной энергии и, следовательно, низкой чувствительности всего устройства. Увеличение длины оптического пути за счет многократных отражений в данной кювете нецелесообразно, т.к. это приведет к увеличению оптических потерь и диссипации измеряемой температуры газа на стенки кюветы, в связи с близостью области нагрева газа со стенками.

Задача, на решение которой направлено предлагаемое изобретение, является увеличение длины оптического пути и области взаимодействия акустического и оптического лучей при уменьшении влияния стенок кюветы. Технический результат - увеличение чувствительности патентуемой регистрирующей кюветы.

Указанный технический результат достигается тем, что так же, как и в известном устройстве, регистрирующая кювета состоит из герметичной камеры, наполненной газом, поглощающим оптическое излучение, входного и выходного окон, расположенных на одной оптической оси на противоположных торцах камеры и акустически согласованных между собой излучателя и приемника ультразвуковых колебаний.

Но в отличие от известного устройства входное и выходное окна патентуемой регистрирующей кюветы для фототермоакустического газоанализатора располагают под углом 45° к оптической оси кюветы, при этом излучатель ультразвуковых колебаний располагают таким образом, что его акустическая ось проходит через точку пересечения плоскости входного окна с оптической осью и составляет с ней угол 90°, а приемник ультразвуковых колебаний располагают таким образом, что его акустическая ось проходит через точку пересечения плоскости выходного окна с оптической осью и также составляет с ней угол 90°.

Такое взаимное расположение названных выше элементов регистрирующей кюветы обеспечивает соосное совмещение проходящих через кювету оптического и акустического излучений, что позволяет в десятки раз увеличить длину их взаимодействия одновременно с увеличением длины оптического пути, а также уменьшить потери тепла за счет влияния стенок кюветы.

На чертеже изображена блок-схема патентуемой регистрирующей кюветы для фототермоакустического газоанализатора.

Она состоит из герметичной камеры 1, входного окна 2 и выходного окна 3. Внутри кюветы находятся акустически согласованные излучатель ультразвуковых колебаний 4 и приемник ультразвуковых колебаний 5. Акустическое излучение распространяется по пути 6, оптическое излучение распространяется по пути 7, 8 - оптическая ось устройства.

Кювета для фототермоакустического газоанализатора работает следующим образом. Оптическое излучение 7, в спектре которого имеются составляющие, совпадающие со спектральными полосами поглощения газа, находящегося внутри камеры 1, проходя вдоль оптической оси 8 через входное окно 2, к выходному окну 3, вызывает нагрев этого газа. Одновременно с этим акустический излучатель 4 возбуждает ультразвуковые колебания, распространяющиеся через газовую среду внутри кюветы к приемнику 5 вдоль направления 6 (согласно Фиг.).

Благодаря известной зависимости скорости распространения акустического колебания С в газовой среде от температуры среды Т: (где К - коэффициент пропорциональности, зависящий от сорта газа, его давления и являющийся в данном случае константой), время прихода ультразвукового колебания на акустический приемник 5 будет изменяться в зависимости от величины падающего оптического излучения.

Заявленный технический результат обеспечивается тем, что в отличие от прототипа данная кювета для фототермоакустического газоанализатора имеет максимальное совмещение акустического и оптического лучей, что делает возможным наиболее эффективно использовать падающую энергию оптического излучения и, следовательно, регистрировать меньшие значения этой энергии.

Регистрирующая кювета для фототермоакустического газоанализатора, состоящая из герметичной камеры, наполненной поглощающим оптическое излучение газом, входного и выходного окон, расположенных на одной оптической оси на противоположных торцах камеры и акустически согласованных между собой излучателя и приемника ультразвуковых колебаний, отличающаяся тем, что входное и выходное окна расположены под углом 45° к оптической оси кюветы, при этом излучатель ультразвуковых колебаний расположен так, что его акустическая ось проходит через точку пересечения плоскости входного окна с оптической осью и составляет с ней угол 90°, а приемник ультразвуковых колебаний расположен так, что находится с излучателем по одну сторону от оптической оси и его акустическая ось проходит через точку пересечения плоскости выходного окна с оптической осью и также составляет с ней угол 90°.



 

Похожие патенты:

Изобретение относится к оптике рассеивающих сред и может быть использовано для экспресс-определения объемной концентрации капельной фазы воды и механических примесей в дизельном топливе, раздельно и совместно их концентрации, предельно допустимые стандартами.

Изобретение относится к технической физике и может быть использовано для анализа физических параметров жидких сред (нефтепродуктов, растительного масла, глицерина, соков, напитков, мочи, крови и т.п.).

Изобретение относится к количественному и/или качественному анализу веществ, в частности растворов. .

Изобретение относится к медицинской технике, а именно к кювете для взятия пробы жидкости организма и для представления образца пробы на анализ. .

Изобретение относится к области оптического приборостроения и может использоваться в приборах газового анализа, где требуется малогабаритность. .

Изобретение относится к области аналитической химии, в частности к анализу материалов с помощью оптических средств, и может быть использовано для идентификации и количественного определения малолетучих веществ в растворах методами инфракрасной спектрометрии.

Изобретение относится к технической оптике, в частности к осветительной технике, и может быть использовано для визуального контроля наличия посторонних включений в жидкости.

Изобретение относится к химическим методам анализа почв и может быть использовано для прямого измерения концентрации подвижных минеральных форм фосфора в почвенных пробах при извлечении его углеаммонийным экстрагентом

Изобретение относится к технической физике и может быть использовано для контроля физическо-химических параметров жидких сред

Изобретение относится к оптическому картриджу и может быть использовано для определения количественного содержания анализируемого вещества в физиологической жидкости. Оптический картридж содержит корпус из оптически прозрачного материала с внутренней полостью, один торец корпуса снабжен входным отверстием во внутреннюю полость, которая разделена на сообщающиеся между собой входную зону и оптическую зону. Высота поперечного сечения внутренней полости в оптической зоне меньше высоты поперечного сечения полости во входной зоне, высоты внутренней полости оптической и входной зоны выбираются из условия возникновения капиллярного эффекта. Во входной зоне внутренней полости установлена, по меньшей мере, одна вставка из пористого материала с реагентом, а корпус имеет, по меньшей мере, одно отверстие для сообщения оптической зоны внутренней полости с внешней средой. Достигаемый при этом технический результат заключается в получении пользователем точного и надежного результата анализа. 4 з.п. ф-лы, 8 ил.

Изобретение относится к биодатчику для обнаружения конкретной молекулы внутри анализируемого вещества. Контейнер (11) биодатчика содержит нижнюю часть (1) с углублением (2), приспособленным для размещения жидкого образца, и покрывающую часть (3) для закрывания упомянутого углубления (2). Углубление (2) содержит поверхность (4) датчика. Нижняя часть (1) приспособлена, чтобы допускать проникновение света вдоль первой оптической траектории (5) для его отражения от поверхности (4) датчика и выход вдоль второй оптической траектории (6). Изобретение обеспечивает точность определения количества конкретных молекул в образце. 2 н. и 13 з.п. ф-лы, 4 ил.

Группа изобретений относится к кювете для хранения биологического образца, способу ее изготовления, а также к способу проверки подлинности кюветы и способу анализа биологического образца, такого как пробы крови, с использованием указанной кюветы. Кювета (10) изготовлена из формуемого материала, который содержит частицы (15a, 15b) в концентрации, находящейся в заданном диапазоне. Частицы (15a, 15b) распределены случайно с формированием уникального узора. Кроме того, частицы (15a, 15b) обладают поддающимися измерению физическими свойствами, что позволяет детектировать уникальный узор с применением методики детектирования, используемой для анализа биологического образца. Уникальные свойства, придаваемые случайно распределенными частицами (15a, 15b), делают копирование практически невозможным, поскольку распределить частицы согласно заданному узору сложнее, чем позволить им распределяться случайно. Достигаемый при этом технический результат заключается в повышении достоверности полученных результатов анализа. 5 н. и 6 з.п. ф-лы, 4 ил.

Группа изобретений относится к области медицины и может быть использована при проведении анализа тонких слоев, в частности монослоев клеток. Устройство для получения слоев, содержащих монослой из клеток, для анализа имеет двумерную матрицу из аналитических камер (45) и разветвленную конфигурацию входных каналов (25), соединенных с каждой из аналитических камер в матрице, для возможности заполнения аналитических камер в параллельном режиме. Каждая из аналитических камер имеет по существу планарную форму, имеющую высоту, меньшую, чем высота входных каналов, чтобы создавать слои текучей среды, содержащей клетки, когда камеры заполняют образцом текучей среды. Общая площадь каждой из аналитических камер варьирует между 100 и 2000 мм2 и/или высота аналитических камер составляет между 1 и 10 мкм, а входные каналы имеют глубину 10-200 мкм и ширину 50-1000 мкм. Группа изобретений относится также к способу изготовления данного устройства, способу получения и способу анализа слоев текучей среды, содержащих монослой из клеток, с использованием указанного устройства, а также к аналитической системе. Группа изобретений обеспечивает возможность проведения автоматизированного анализа образцов слоев, текучей среды, содержащих монослои из клеток, в картридже. 5 н. и 9 з.п. ф-лы, 6 ил., 1 пр.

Изобретение относится к области физики, а именно к спектрометрическим измерениям содержания йода-129 в пробах почвы с использованием схемы бета-икс совпадений, и предназначено для обеспечения повышения эффективности регистрации рентгеновского и бета излучений от радиоактивного препарата йода-129, размещенного в кювете дискообразной формы с жидким сцинтиллятором. Корпус кюветы выполнен из двух тарелок с плоскими ободками, изготовленными из упругой тонкостенной полипропиленовой пленки толщиной 0,1 мм. Плоские ободки тарелок герметично сварены друг с другом путем использования ручного импульсного сварщика так, что в итоге на ободке кюветы получают восьмигранную фигуру, образованную линиями сварки. У основания плоского ободка кюветы прокалывают заклеиваемое входное-выходное отверстие для заливки в кювету и извлечения из нее раствора жидкого сцинтиллятора с препаратом йода-129. Технический результат заключается в сохранении кюветой своей формы после падений, устойчивости к агрессивной среде жидкого сцинтиллятора, простоте изготовления, а также в обеспечении высокоэффективной десятипроцентной регистрации актов распада йода-129 благодаря малому поглощению мягкого рентгеновского и бета-излучений в тонких стенках кюветы и в жидком сцинтилляторе. 1 ил.

Изобретение относится к спектрометрическому анализу материалов. Оптический спектрометр (102) включает регулируемое пространство (104) пробоотбора, содержащее две, как правило, противонаправленные, относительно подвижные боковые стенки (106, 108), которые сформированы, по существу, из оптически прозрачного материала, между которыми загружен образец для анализа, и привод (116), механически связанный, с одной или обеими боковыми стенками (108) и действующий в ответ на применяемый к нему командный сигнал для осуществления их относительного перемещения. Спектрометр (102) также включает оптический датчик (110, 112, 114) положения, предназначенный для обнаружения интерференционных полос, генерируемых световой энергией, многократно преодолевшей расстояние между боковыми стенками (106, 108), и для генерирования в зависимости от них командного сигнала. Изобретение обеспечивает уменьшение влияния механического износа или механических изменений, вызванных температурой и/или давлением. 2 н. и 11 з.п. ф-лы, 4 ил.

Изобретение относится к устройству для фотометрического или спектрометрического исследования жидкой пробы. Устройство (1) включает в себя выполненную с возможностью расположения в траектории лучей между источником (4) излучения и детектором (5) излучения кювету (3, 3′), в которой размещена исследуемая жидкая проба (2), содержащую проницаемый для излучения входной участок (6) для ввода излучения (20), создаваемого при помощи источника (4) излучения и вступающего во взаимодействие с объемом (8) пробы, и содержащую проницаемый для излучения выходной участок (7) для вывода излучения (20″), предназначенного для регистрации в детекторе (5). При этом входной участок (6) имеет такую выпуклую входную поверхность (11) и/или выходной участок (7) имеет такую сферическую выпуклую выходную поверхность (12, 12′), что попадающее излучение (20, 20′) фокусируется по типу фокусирующей линзы. Изобретение обеспечивает возможность точного формирования возбуждающего излучения, применяемого для исследования жидкой пробы, с малыми затратами на монтаж и юстировку. 12 з.п. ф-лы, 10 ил.

Изобретение относится к области медицинской и аналитической техники и может быть использовано при изготовлении пластиковых кювет для анализа жидких проб, например, образцов физиологических жидкостей человека, животных или растений, питьевых и пищевых продуктов, проб воды из различных источников, других жидкостей органической и неорганической природы. Отливают не менее две сопрягаемые части кюветы из отверждаемой полимерной композиции, содержащей в своем составе сложные эфиры, в формах соответствующей геометрии. Обрабатывают поверхности полученных частей кюветы раствором щелочи в течение заданного промежутка времени при температуре не ниже 263 K. Удаляют остатки раствора щелочи с поверхностей частей кюветы растворителем. Сушат части кюветы. Соединяют части кюветы между собой по сопрягаемым поверхностям с образованием готовой кюветы. При этом в зависимости от температурного режима заданный промежуток времени может изменяться в диапазоне от 5 до 120 минут. Обеспечивается упрощение и технологичность изготовления кюветы для анализа жидких проб с высокими гидрофильными свойствами. 1 з.п. ф-лы, 1 ил.
Наверх