Способ термической стабилизации размеров деталей прецизионных приборов из закаленного алюминиевого сплава д20


 


Владельцы патента RU 2461643:

Открытое акционерное общество "Раменское приборостроительное конструкторское бюро" (ОАО "РПКБ") (RU)

Изобретение относится к области металлургии и может быть использовано при термической стабилизации размеров высокоточных деталей. Способ термической стабилизации размеров деталей прецизионных приборов из закаленного алюминиевого сплава Д20 включает искусственное старение при 170±5°C в два этапа по 8 часов каждый, при этом после первого этапа искусственного старения проводят механическую обработку, а второй этап искусственного старения совмещают со стабилизирующим отпуском. Технический результат изобретения заключается в сокращении длительности технологического процесса и стабилизации размеров деталей прецизионных приборов. 1 пр., 1 табл.

 

Предлагаемое изобретение относится к области термической обработки и может быть применено при термической стабилизации размеров деталей прецизионных приборов (рам, корпусов, панелей, кронштейнов и т.п.) во время их изготовления из полуфабрикатов закаленного сплава Д20.

Известен способ термической стабилизации размеров деталей прецизионных приборов из закаленного алюминиевого сплава Д20 по ОСТ 1.80276-86 [1]. Термическая стабилизация размеров металлических деталей прецизионных приборов. Типовой технологический процесс, табл.19, взятый в качестве аналога-прототипа.

Известный технологический процесс изготовления деталей прецизионных приборов из закаленного сплава Д20 состоит из:

1. Искусственного старения при 170±5°C в течение 16 часов.

2. Основной механической обработки.

3. Стабилизирующего отпуска при 140±10°C в течение 8-10 часов.

4. Отделочной механической обработки.

5. Термоциклической обработки при минус 60°C в течение 1 часа и при +140±10°C в течение 1 часа 3 раза.

6. Окончательной механической обработки.

7. Стабилизирующего старения при 130±10°C - 6-8 часов.

8. Антикоррозионной обработки.

9. Заключительного старения при 130±10°C в течение 3-5 часов.

Механическую обработку деталей (строгальную, токарную, фрезерную и т.п.) начинают выполнять только после операции искусственного старения.

Недостаток этого процесса заключается в том, что он продолжителен по времени.

Технический результат, достигаемый при использовании предлагаемого изобретения, состоит в сокращении длительности технологического процесса и более эффективной стабилизации размеров деталей прецизионных приборов.

Технический результат достигается тем, что в способе термической стабилизации размеров деталей прецизионных приборов из закаленного алюминиевого сплава Д20, подвергаемых искусственному старению при 170±5°C, искусственное старение осуществляется в два этапа по 8 часов каждый, при этом механическую обработку осуществляют после первого этапа старения, а второй этап искусственного старения совмещают со стабилизирующим отпуском.

Отличительный признак предлагаемого способа: проведение механической обработки после первого этапа искусственного старения и совмещение второго этапа искусственного старения со стабилизирующим отпуском.

Перечисленные особенности являются новым существенным отличием предлагаемого способа от известных, что и обеспечивает технический результат.

Пример практического применения.

Подвергали термической обработке и термической стабилизации образцы из закаленного сплава Д20. Результаты указаны в таблице. Искусственное старение закаленного сплава Д20 проводили при 170±5°C и разделяли на 2 временных этапа: первый этап 8 ч и второй этап 8 ч. Термическая обработка полуфабрикатов и деталей из алюминиевых деформируемых сплавов [2].

Таблица
Свойства образцов из закаленного сплава Д20 и изменение их размеров после различных режимов термической обработки и термической стабилизации
№ режимов Режим искусственного старения при 170±5°C Свойства и изменение размеров после Примечание
Искусственного старения Стабилизирующего старения при 130°C - 8 часов
σв, кгс/мм2 δ, % Изменение длины, ± мм σв, кгс/мм2 δ, % Изменение длины, ± мм
1 2 3 4 5 6 7 8 9
1 Непрерывное в течение 16 часов (по инструкции ВИАМ ПИ1.2.255-83) основная + механическая обработка 38 10 +0,095 38 10 0 Способ аналог-прототип
+ стабилизирующий отпуск 140±10°C - 8 часов 38 10 0 38 10 0
2 В 2 этапа: 1-й этап - 8 часов + основная механическая обработка 38 10 +0,095 38 10 0 Предлагаемый режим
+ 2-й этап - 8 часов 38 10 0 38 10 0
3 В 2 этапа: 1-й этап - 4 часа + основная механическая обработка 35 12 +0,05 36 11 +0,01 Режим, выходящий за пределы предлагаемого способа
+ 2-й этап - 12 часов 38 10 +0,045 38 10 0
Примечания к таблице: 1. Закалку образцов из листа ≠3 мм производили по режиму 535±5°C, выдержка 25 минут, охлаждение в воде с температурой 75-100°C (см. Производственную инструкцию ВИАМ ПИ 1.2.255-83, табл.5)
2. При исследовании использовали образцы тип II ГОСТ1497-84. Торцы образцов доводили до шероховатости 0,16. Изменение длины образцов измеряли с точностью 0,003 мм. Результаты измерения размеров (длины) образцов являются среднеарифметическим значением измерения 3-х образцов
3. Образцы изготавливали согласно ГОСТ 1497-84

Из таблицы следует, что предлагаемый режим обеспечивает механические свойства, аналогичные свойствам после стандартного режима термической обработки. Из результатов таблицы следует, что после применения предлагаемого способа термической стабилизации размеров высокоточных деталей из закаленного сплава Д20 изменения размеров по сравнению с применяемым способом не установлено даже после стабилизирующего старения при 130°C в течение 8 часов.

В результате использования предлагаемого способа техпроцесс изготовления следующий:

1. Искусственное старение 170±5°C - 8 ч - 1-й этап.

2. Основная механическая обработка.

3. Искусственное старение 170±5°C - 8 ч - 2-й этап.

4. Отделочная механическая обработка.

6. Термоциклическая обработка

6. Окончательная механическая обработка.

7. Стабилизирующее старение при 130±10°C - 6-8 часов.

8. Антикоррозионная обработка.

9. Заключительное старение при 130±10°C в течение 3-5 часов.

Использование предлагаемого способа позволяет:

1. Сократить режим технологического процесса изготовления высокоточных деталей из закаленного сплава Д20 на 8 часов за счет сокращения операции стабилизирующего отпуска.

2. Экономить электроэнергию за счет исключения операции «стабилизирующий отпуск».

3. Использовать более высокую температуру нагрева (170°C) вместо 140°C для стабилизации размеров высокоточных деталей.

Источники информации

1. OCT 1.80076-86. Термическая стабилизация размеров металлических деталей прецизионных приборов. Типовой технологический процесс, табл.19.

2. Термическая обработка полуфабрикатов и деталей из алюминиевых и алюминиевых деформируемых сплавов ПИ 1.2.255-83, п.5.27. Технологический процесс.

Способ термической стабилизации размеров деталей прецизионных приборов из закаленного алюминиевого сплава Д20, подвергаемых искусственному старению при (170±5)°C и механической обработке, отличающийся тем, что искусственное старение осуществляют в два этапа по 8 ч каждый, при этом механическую обработку проводят после первого этапа искусственного старения, а второй этап искусственного старения совмещают со стабилизирующим отпуском.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к деформируемым материалам на основе алюминия, и может быть использовано при получении изделий, работающих при повышенных температурах до 350°С.
Изобретение относится к области термической обработки и может быть применено при термической стабилизации размеров высокоточных деталей из сплава АК4-1 ч. .

Изобретение относится к изделию из алюминиевого сплава серии 2ххх, который может быть использован в аэрокосмической промышленности. .

Изобретение относится к деформируемому сплаву на основе алюминия, а именно к продукту из него, и способу изготовления этого продукта. .

Изобретение относится к прокатным, экструдированным или кованым изделиям из алюминиевых сплавов, а именно к листам, панелям фюзеляжа летательного аппарата, а также к конструктивным элементам, предназначенным для авиастроения, и может быть использовано в авиационно-космической промышленности.

Изобретение относится к изделиям из сплавов на основе алюминия, а именно к изделиям, используемым в авиационно-космической промышленности и пригодным для применения в конструкциях фюзеляжа.

Изобретение относится к алюминиевому сплаву с улучшенной стойкостью к повреждениям, состоящему по существу из следующих компонентов, мас.%: медь 3,0-4,0; магний 0,4-1,1; серебро вплоть до 0,8; цинк вплоть до 1,0 мас.%; цирконий вплоть до 0,25 мас.%; марганец вплоть до 0,9; железо вплоть до 0,5; и кремний вплоть до 0,5; остальное - по существу алюминий, случайные примеси и элементы, причем упомянутые медь и магний присутствуют в отношении 3,6-4,5 частей меди на 1 часть магния.
Изобретение относится к области металлургии и термической обработки. .

Изобретение относится к способу изготовления изделия и изделию, полученному указанным способом, из деформируемого алюминиевого сплава серии АА2000, обладающего повышенными прочностью и вязкостью разрушения и пониженной скоростью роста усталостных трещин и имеющего состав в мас.%: Cu от 4,4 до 5,5, Mg от 0,3 до 1,0, Fe<0,20%, Si<0,20, Zn от 0,10 до 0,40 и Mn от 0,15 до 0,35 в качестве элемента-дисперсоидообразователя в сочетании с Ag от 0,2 до 0,8 и, необязательно, одним или более из элементов-дисперсоидообразователей, выбранных из группы, состоящей из: Zr<0,5, Sc<0,7, Cr<0,4, Hf<0,3, Ti<0,4, V<0,4, остальное - алюминий и другие примеси или случайные элементы, при этом содержание Mg и Cu соответствует соотношению -1,1[Mg]+5,38 [Cu] 5,5

Изобретение относится к области металлургии и может быть использовано в точном приборостроении и машиностроении, в частности при термической обработке листовых заготовок из алюминиевого сплава Д16 перед дальнейшим изготовлением из них деталей высокоточных приборов, например рам, корпусов, крышек, стенок, плат и др

Изобретение относится к продуктам из алюминиевых сплавов и способам их изготовления

Изобретение относится к алюминиево-медно-литиевым сплавам, имеющим улучшенное сочетание свойств, и продуктам из них, таким как стрингер и лонжерон самолета. Продукт из деформируемого алюминиевого сплава состоит из: 3,6-4,0 вес.% Cu, 1,1-1,2 вес.% Li, 0,4-0,55 вес.% Ag, 0,25-0,45 вес.% Mg, 0,4-0,6 вес.% Zn, 0,2-0,4 вес.% Mn и 0,05-0,15 вес.% Zr, остальное составляют алюминий и второстепенные элементы и примеси. Обеспечивается улучшенное сочетание прочности и вязкости алюминиевого сплава. 2 н. и 11 з.п. ф-лы, 5 ил., 8 табл., 2 пр.

Изобретение относится к области металлургии, а именно к алюминиево-медным сплавам, содержащим ванадий. Заявлен алюминиевый сплав, состоящий из, вес.%: Cu 3,3-4,1, Mg 0,7-1,3, V 0,01-0,16, Mn 0,01-0,7, 0,01-0,25 по меньшей мере одного регулирующего зеренную структуру элемента, выбранного из группы, состоящей из Zr, Sc, Cr и Hf, Zn вплоть до 1,0, Ag вплоть до 0,6, Fe вплоть до 0,25 и Si вплоть до 0,25, алюминий, другие элементы и примеси - остальное. Сплавы характеризуются повышенными характеристиками прочности, вязкости, сопротивления коррозии и росту усталостной трещины. 2 н. и 21 з.п. ф-лы, 11 ил., 11 табл., 4 пр.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении изделий, работающих в диапазоне температур до 350°С. Сплав содержит, мас.%: 0,6-1,5 Cu; 1,2-1,8 Mn; 0,2-0,6 Zr; 0,05-0,25 Si; 0,1-0,4 Fe; 0,01-0,3 Cr; Al остальное, при этом сплав содержит цирконий в своей структуре в виде наночастиц фазы Al3Zr с размером не более 20 нм, а марганец преимущественно образует вторичные выделения фазы Al20Cu2Mn3 с размером не более 500 нм в количестве не менее 2 об.%. Способ получения деформированного полуфабриката из упомянутого сплава включает приготовление расплава и получение литой заготовки путем кристаллизации расплава при температуре, не менее чем на 50°С превышающей температуру ликвидуса, деформирование литой заготовки в два этапа с промежуточным отжигом при 340-450°С при температуре, не превышающей 350°С, с получением промежуточного деформированного полуфабриката, отжиг полученного полуфабриката при температуре 340-450°С и его деформирование при комнатной температуре до получения готового деформированного полуфабриката и отжиг готового деформированного полуфабриката при температуре 300-400°С. Технический результат заключается в повышении прочности, термостойкости и электропроводности сплава на основе алюминия, а также деформированных полуфабрикатов в виде листов, прутков, проволоки, штамповок, труб, выполненных из него. 2 н. и 5 з.п. ф-лы, 6 пр., 8 табл., 3 ил.
Изобретение относится к области металлургии, а именно к способу термомеханической обработки полуфабрикатов из Al-Cu-Mg-Ag сплавов для дальнейшей формовки из них объемных деталей сложной формы, применяемых в авиакосмической технике и транспортном машиностроении. Термомеханическая обработка полуфабрикатов включает деформацию гомогенизированных и механически обработанных слитков сплава методом равноканального углового прессования при 380-450°C в 1-2 прохода прессования до истинной степени деформации (ε) ~1-2, закалку в воду после выдержки при 500-530°C в течение 1-5 часов, гетерогенизационный отжиг при 400-450°C в течение 3 часов, последующее контролируемое охлаждение со скоростью не более 50°C/ч до температуры 280-380°C и последующее охлаждение внутри выключенной печи до 25-100°C, продолжительностью не более 12 часов. Техническим результатом изобретения является повышение технологической пластичности полуфабрикатов из алюминиевых сплавов системы Al-Cu-Mg-Ag, позволяющей проводить формовку объемных заготовок из данных сплавов. 4 з.п. ф-лы, 2 пр., 1 табл.

Изобретение относится к области металлургии, в частности к термически упрочняемым сплавам на основе алюминия, а именно к способу деформационно-термической обработки высокопрочных сплавов системы Al-Cu-Mg, используемых в качестве конструкционных материалов для деталей авиакосмической техники и транспортного машиностроения. Способ включает гомогенизационный отжиг отлитых слитков при температуре 450-525°C в течение 2-24 ч, обработку на твердый раствор при температуре 510-530°C в течение 1-2 ч, закалку в воду, последующую холодную деформацию и искусственное старение в интервале температур 160-195°C в течение 2-3 ч, причем после перед обработкой на твердый раствор осуществляют горячую деформацию заготовок методом равноканального углового прессования с истинной степенью деформации ε 1-2 при температуре 340-450°C, а холодную деформацию проводят до суммарной степени 1-60%. После гомогенизационного отжига перед равноканальным угловым прессованием можно проводить охлаждение заготовок внутри выключенной печи до температуры 20-100°C, продолжительностью не более 12 ч. Способ направлен на повышение механических свойств полуфабрикатов сплава указанной системы с сохранением пластичности на уровне исходного материала, что позволяет повысить надежность и эффективность изделий авиакосмической техники и транспортного машиностроения, изготовленных из полученных полуфабрикатов. 3 з.п. ф-лы, 2 пр., 1 табл.

Изобретение относится к порошковой металлургии. Способ получения порошка квазикристаллического материала системы Al-Cu-Fe включает перемешивание порошков алюминия, меди и железа при соотношении компонентов, соответствующем области существования квазикристаллической фазы сплава системы Al-Cu-Fe, нагрев полученной смеси в камере в бескислородной атмосфере с последующим измельчением спека до получения порошка заданной дисперсности. Нагрев смеси производят до температуры 600-700°С, обеспечивающей инициализацию экзотермического процесса самопроизвольного формирования квазикристаллической фазы сплава, при этом измеряют текущую температуру нагрева в камере и температуру нагрева смеси порошков. При превышении температуры смеси порошков над текущей температурой нагрева в камере проводят отжиг при температуре 800-1300°С с обеспечением стабилизации квазикристаллической фазы сплава по всему объему смеси порошков. Обеспечивается получение качественного порошка квазикристаллического материала. 5 з.п. ф-лы, 1 ил., 1 табл, 4 пр.
Наверх