Способ калибровки устройства для наземного электромагнитного индукционного частотного зондирования


 


Владельцы патента RU 2461850:

Учреждение Российской академии наук Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения РАН (ИНГГ СО РАН) (RU)

Изобретение относится к способам определения технических параметров приборов, выполняющих дистанционные исследования геологической среды. Согласно заявленному способу калибровку выполняют при помощи замкнутого токопроводящего калибровочного кольца, расположенного между устройством для электромагнитного индукционного частотного зондирования и поверхностью земли. Выполняют измерения сигнала от индуцированных токов в кольце при нескольких положениях устройства над кольцом. С помощью математического расчета подбирают эффективные расстояния от центра генераторного диполя до центров приемных диполей, моменты приемных диполей, зависящие от частоты, и уточненное положение калибровочного кольца, обеспечивающие совпадения расчетных сигналов с экспериментальными для всех рабочих частот и множества расстояний до кольца. Технический результат: повышение точности настройки прибора.

 

Изобретение относится к способам определения технических параметров приборов, выполняющих дистанционные исследования геологической среды.

Известен способ электромагнитного индукционного частотного зондирования (патент РФ №2152058, М. кл.7, G01V 3/10, опубл. 27.06.2000), включающий генерацию переменного магнитного поля последовательно на нескольких частотах и измерение на каждой частоте компонент вторичного магнитного поля приемными датчиками с предварительной компенсацией сигнала прямого поля на средней частоте диапазона. При этом жестко фиксируют положение датчиков относительно генераторной петли.

Устройство для осуществления данного способа содержит индукционный зонд, снабженный генератором и двумя приемными датчиками, которые рассматриваются как диполи, размещенные на одной прямой. Моменты диполей расположены в одной плоскости, перпендикулярной поверхности земли. Все элементы зонда соединены с электронным блоком, включающим узлы управления, преобразования, питания и компьютер. Прибор выполняет измерения кажущейся удельной электропроводности грунта последовательно на нескольких частотах.

Для количественной интерпретации данных, получаемых устройством, требуется знать действующие расстояния между центрами генераторного и приемных диполей и зависящие от частоты измерительные моменты. Определить эти параметры с требуемой точностью прямым измерением не удается. Имеющиеся в настоящее время подходы к калибровке каротажных и наземных электромагнитных приборов (например, а.с. №1242885, М. кл.4, G01V 3/18, опубл. 07.07.1986) также не обеспечивают требуемой точности калибровки устройства для наземного электромагнитного индукционного частотного зондирования.

Предлагаемое изобретение позволяет с помощью математической процедуры минимизации функции невязки в автоматическом режиме подобрать пять параметров указанного устройства.

Сущность предлагаемого способа состоит в следующем. Калибровку выполняют при помощи замкнутого токопроводящего калибровочного кольца (например, из медной проволоки) диаметром около 1 м, расположенного между устройством для электромагнитного индукционного частотного зондирования и поверхностью земли. Выполняют измерения сигнала от индуцированных токов в кольце при нескольких положениях устройства над кольцом. С помощью математического расчета подбирают параметры устройства, а именно эффективные расстояния от центра генераторного диполя до центров приемных диполей и моменты приемных контуров, зависящие от частоты, и уточненное положение калибровочного кольца, обеспечивающие совпадения расчетных сигналов с экспериментальными для всех рабочих частот и множества расстояний до кольца.

Участок земли, где производят калибровку, выбирают с наименьшей электропроводностью, по строению близким к полупространству. Поиски такого участка выполняют с помощью электроразведочных методов исследования геологических сред. Высота расположения устройства для электромагнитного индукционного частотного зондирования над поверхностью земли обеспечивает пренебрежимо малый сигнал от земли по сравнению с сигналом от замкнутого проволочного кольца.

В данном способе определению подлежат следующие параметры:

- эффективные расстояния от центра генераторного диполя до центров приемных диполей (r1, r2),

- моменты приемных контуров, зависящие от частоты (М1(f), М2(f));

- уточненное положение калибровочного кольца.

В результате измерений получают набор из нескольких десятков величин, которые необходимо уточнить исходя из максимальной близости экспериментальных и синтетических данных, полученных в калибровочной модели. Одиночные эксперименты не обеспечивают достаточной информации для определения этих параметров. Более того, подбор параметров из различных диапазонов сигналов дает несогласованные результаты. Например, при подборе только по отрицательным и только по положительным сигналам получаются различные значения параметров. Таким образом, необходимо установить соответствие между экспериментом и расчетом на основании полного набора экспериментальных данных при условии согласования подбираемых параметров между различными подмножествами - наборами положений эксперимента. Имеющиеся погрешности измерений делают невозможным взаимно однозначное определение значений всех искомых параметров по равному числу экспериментальных данных. Таким образом, необходим избыточный набор измерений. Задача калибровки сводится к минимизации целевой функции. Измерения при фиксированных положениях калибровочного кольца обеспечивают избыточность такой системы данных.

В качестве целевой функции F для минимизации выбрано относительное среднеквадратичное расхождение между измеренными и расчетными значениями сигнала

здесь N - число измерений.

Из-за большого числа искомых во всем пространстве параметров поиск минимума является ресурсоемким. Поэтому необходимо производить минимизацию на некоторых подмножествах полного набора. В качестве алгоритма минимизации используется симплекс метод Нелдера-Мида. Для исключения ложных решений задаются диапазоны допустимых изменений подбираемых величин.

Способ калибровки выполняют в следующей последовательности. Прибор размещают над калибровочным кольцом в нескольких фиксированных позициях по вертикали (например, 12). Для каждой (например, из 14-ти) частоты (fi, i=1…14) и высоты (hj, j=1…12) подбирают пять параметров r1(fi, hj), r2(fi, hj), M1(fi, hj), M2(fi, hj), hj. При этом отслеживают условие согласования этих параметров для различных срезов, заключающееся в совпадении параметров, подбираемых для разных подмножеств. В результате выбирают осредненные значения. Затем найденные приближения используют для уточнения положений кольца. Автоматизированный подбор осуществляют последовательно по ряду подмножеств из пяти параметров для каждой частоты и высоты над кольцом. Значения расстояний (r1 и r2) и измерительных моментов (M1 и M2) для различных положений калибровочного кольца получают согласованными с достаточной точностью (например, 2%). После подбора параметры усредняют и используют для расчета абсолютной и относительной погрешности технических параметров устройства.

Способ калибровки устройства для наземного электромагнитного индукционного частотного зондирования, включающий расположение замкнутого калибровочного кольца между устройством и поверхностью земли, измерение сигнала от индуцированных токов в калибровочном кольце при нескольких фиксированных положениях устройства над кольцом, подбор с помощью математического расчета эффективных расстояний от центра генераторного диполя до центров приемных диполей, моментов приемных диполей, зависящих от частоты, и уточненного положения калибровочного кольца, обеспечивающих совпадения расчетных сигналов с экспериментальными для всех рабочих частот и множества расстояний до кольца.



 

Похожие патенты:

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для обеспечения измерений плотности преимущественно буровых и тампонажных растворов, используемых в процессе строительства скважин.

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к калибровке аппаратуры по контролю технического состояния нефтяных и газовых скважин гамма-гамма методом.

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к созданию стандартных образцов для калибровки скважинной аппаратуры нейтронного каротажа, работающей на газовых месторождениях и подземных хранилищах газа (ПХГ).

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры (СГА), а именно к созданию стандартных образцов для калибровки СГА нейтронного каротажа, работающей на газовых месторождениях и подземных хранилищах газа.

Изобретение относится к области сейсморазведки, а именно к средствам для определения параметров сейсмоприемников. .

Изобретение относится к области измерительной техники и может быть использовано в средствах регистрации колебаний грунта для определения их частотной характеристики и экспериментальной калибровки.

Изобретение относится к нефтяной и газовой промышленности для геофизических исследований действующих скважин. .

Изобретение относится к области геофизики и может быть использовано для проверки и подготовки к работе в полевых условиях аппаратуры импульсной электроразведки

Изобретение относится к области изготовления, градуировки и обслуживания приборов и устройств для геофизических измерений и может быть использовано в оборудовании для каротажа, содержащем систему охлаждения с использованием криогенных жидкостей

Изобретение относится к нефтепромысловой геофизике и может быть использовано в процессе акустического каротажа. Согласно заявленному изобретению обеспечивается моделирование реального акустического волнового сигнала и полное дистанционное тестирование прибора акустического каротажа в полевых условиях путем разложения входного акустического волнового сигнала на спектральные составляющие и сравнение полученной спектральной характеристики с эталонной спектральной характеристикой. Технический результат: повышение точности данных каротажа посредством обеспечения дистанционного тестирования для приборов акустического каротажа в полевых условиях. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно заявленному способу в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные сигналы Uг. Для всего требуемого диапазона частот и амплитуд сигналов Uг измеряют выходной сигнал смещения Uсм и выходной сигнал Uвых устройства обратной связи и по отношению их амплитуд к амплитуде сигнала Uг определяют динамические характеристики акселерометра. По первому варианту подают сигнал Uг в датчик силы либо через эталонную нагрузку, либо через дополнительный вход усилителя мощности цифрового устройства обратной связи, соединяя свободный вывод эталонной нагрузки с общей шиной, а сигналы Uсм и Uвых измеряют соответственно со стороны выходов следующих элементов цифрового устройства обратной связи: усилителя-преобразователя и интегро-дифференциирующего усилителя. По второму варианту подают сигнал Uг в датчик силы через эталонную нагрузку, а сигнал Uвых измеряют со стороны выхода интегро-дифференциирующего усилителя устройства обратной связи и подают на активный фильтр, с выхода которого измеряют выходной сигнал U в ы х * . Сигнал Uсм измеряют со стороны выхода усилителя-преобразователя устройства обратной связи. Технический результат - повышение точности измерения динамических характеристик акселерометра. 2 н.п. ф-лы, 3 ил.

Изобретение относится к геофизическому приборостроению, в частности к средствам гамма-гамма каротажа, а именно к области метрологического обеспечения скважинной геофизической аппаратуры и созданию стандартных образцов для калибровки скважинной аппаратуры. Техническим результатом изобретения является повышение быстродействия процесса калибровки скважинной аппаратуры плотностного и литоплотностного гамма-гамма каротажа, экономичности и уменьшения радиационной нагрузки на персонал. Технический результат достигается тем, что устройство для калибровки скважинной аппаратуры плотностного и литоплотностного гамма-гамма каротажа в виде насыщенной модели пласта, содержит цилиндрический корпус, заполненный материалом породы и пересеченный скважиной в виде тонкостенной стеклопластиковой трубы, расположенной вдоль его продольной оси и заканчивающейся зумпфом. При этом в корпусе радиально установлены, по крайней мере, две вертикальные перегородки, герметично соединенные со стенкой корпуса, его днищем и стеклопластиковой трубой, образуя одинаковые, изолированные друг от друга контейнеры. Каждый из этих контейнеров заполнен материалом породы с заданными плотностью ρ и эффективным атомным номером Zэф. 1 з.п. ф-лы, 6 ил.
Изобретение относится к геофизическим, в частности сейсмоакустическим, методам исследований различных свойств массива горных пород, и может быть использовано для контроля характеристик датчиков, применяющихся в сейсмоакустике. Согласно заявленному способу дополнительно определяют механическое смещение рабочей поверхности исследуемого сейсмоакустического датчика бесконтактным способом. Одновременно определяют первый нуль функции огибающей спектральной плотности мощности электрического сигнала на выходе исследуемого сейсмоакустического датчика. Проводят сравнение сигнала, пропорционального механическому смещению рабочей поверхности исследуемого сейсмоакустического датчика, и сигнала с выхода исследуемого сейсмоакустического датчика. По результатам сравнения судят о динамических характеристиках исследуемого сейсмоакустического датчика. Технический результат - повышение достоверности проводимого контроля.

Изобретение относится к области геофизики и может быть использовано для контроля характеристик датчиков, применяющихся при мониторинге различных технических объектов. Согласно заявленному устройству использована система, в которой фотоприемник, оптически квантовый генератор и приемный модуль соединены оптическим волокном через оптический разветвитель. Причем приемный модуль установлен на жестких опорах и акустически развязан с излучающим элементом и контролируемым сейсмоакустическим датчиком. Технический результат - повышение достоверности получаемых результатов. 1 ил.
Наверх