Способ получения сорбционных материалов на основе углеродных нанотрубок

Изобретение относится к области получения новых сорбционных материалов на основе углеродных нанотрубок и может быть использовано для извлечения актинидных и редкоземельных элементов из растворов. Способ получения сорбционного материала предусматривает импрегнирование углеродных нанотрубок фосфорорганическими лигандами в процессе перемешивания в среде 3,0-8,0 М НNO3 в весовом соотношении реагент-носитель (0,175-1,0): 1,0 и последующее промывание полученного продукта 3-кратным количеством 3,0-8,0 М НNО3. Изобретение обеспечивает простое получение сорбционных материалов с высокими характеристиками. 3 з.п. ф-лы, 8 пр.

 

Изобретение относится к области получения новых сорбционных материалов, предназначенных для извлечения актинидных и редкоземельных элементов из растворов.

Известны способы получения сорбционных материалов, предназначенных для извлечения актинидных и редкоземельных элементов из азотнокислых растворов, путем введения комплексообразующих групп или соединений в различные твердые матрицы. Способы химического закрепления комплексообразующих групп осуществляются путем химического взаимодействия соответствующих соединений или групп с активными группами, введенными или содержащимися на твердом носителе. Нековалентное закрепление или импрегнирование осуществляется путем нанесения раствора соответствующего соединения в органическом растворителе на носитель с последующим удалением растворителя. В качестве реагентов для закрепления на твердой фазе используют алкилфосфаты, диарил[диалкилкарбамоилметил]фосфиноксиды, моно-, ди-, триалкилфосфиноксиды, фосфинаты и фосфонаты, диокиси метилендифосфина, амиды и диамиды, амины и др., используемые в качестве экстрагентов для экстракционного извлечения актинидных и редкоземельных элементов из азотнокислых растворов. В качестве матриц (носителей) используют силикагели, сополимеры стирола и дивинлбензола и акрилатные полимеры, неорганические оксиды, фуллереновую чернь и др.

Известен способ получения сорбционного материала для извлечения актинидов и РЗЭ из азотнокислых растворов путем сополимеризации винилидендифосфоновой кислоты со стиролом (или акриламидом), акрилонитрилом (или метакрилатом), дивинилбензолом (или другим ди- или тривинильным сшивающим агентом) в присутствии этилгексанола и азо-бисизобутиронитрила при их перемешивании в течение 18 часов при 75°С в водном растворе хлорида кальция, содержащем поливиниловый спирт. Образовавшийся полимер отделяют от жидкой фазы, промывают водой, обрабатывают последовательно растворами КОН и НСl, а затем раствором хлорсульфоновой кислоты в хлористом этилене. Полученный сорбционный материал содержит gem-дифосфоновые группы, а также сульфогруппы и/или карбоксильные группы и характеризуется коэффициентами распределения при сорбционном извлечении актинидов из азотнокислых растворов Am(III) - 7,5·101, U(VI) - 2,0·104, Pu(IV) - 1,6·104 мл/г (10М HNO3); Am(III) - 9,9·101, U(VI) - 5,1·104, Pu(IV) - 6,5·103 мл/г (5М НNО3).

[US Patent №5281631, опубл. 25.01.1994 и US Patent №5449462, опубл. 12.09.1995].

Известен также способ получения сорбционного материала для извлечения актинидов и РЗЭ из азотнокислых растворов путем химического закрепления комплексообразующих групп карбамоилметилфосфинатов на сополимере стирола и дивинилбензола. Согласно приведенному способу синтеза на первой стадии хлорметилированный сополимер стирола и дивинилбензола обрабатывают диметилсульфоксидом при 110°С в течение 8 ч при перемешивании. Полученный продукт обрабатывают последовательно фенилдихлорфосфином при 90°С в течение 24 ч и диэтилфенилфосфонитом при 110°С в течение 12 ч при перемешивании. Полученный продукт содержит бидентатные метиленбис(этилфенилфосфинатные) группы и характеризуется коэффициентами распределения при сорбционном извлечении из азотнокислых растворов: U(VI) - 2,9·102, Аm(III) - 19, Pu(IV) - 2,4·103 мл/г (3М HNO3).

[В.П.Моргалюк, Н.П.Молочникова, Г.В.Мясоедова, Е.В.Шарова, О.И.Артюшин, И.Г.Тананаев. // Радиохимия. 2005. т.47, №2. С. 167-170].

Недостатком указанных способов химического закрепления является многостадийность и трудоемкость способа получения целевого продукта, а также использование большого количества реагентов.

Известен способ получения сорбционного материала с группами октил(фенил) диизобутилкарбамоилметилфосфиноксида импрегнированием макропористых акрилатных полимеров в виде гранул: Amberlite XAD-7 и Amberchrom CG-71. Импрегнирование осуществляется путем перемешивания предварительно промытого водой и метанолом носителя, с раствором октил(фенил)диизобутилкарбамоилметилфосфиноксида в метаноле, содержащем трибутилфосфат, в течение 15 мин. Затем растворитель удаляют при 40°С под вакуумом. Готовый продукт характеризуется данными по коэффициентам распределения при сорбционном извлечении Am(III) из растворов 1-2М НNО3 - 4,5·102 мл/г.

[E.P.Horwitz, M.L.Dietz, D.N.Nelson, J.J.LaRosa, W.D.Fairman. Concentration and separation of actinides from urine using a supported bifunctional organophosphoms extractant // Anal.Chim.Acta. 1990. V.238. P.263-271].

Известен способ получения сорбционного материала с группами октил(фенил)диизобутилкарбамоилметилфосфиноксида импрегнированием пористого SiO2, содержащего иммобилизованный сополимер стирола и дивинилбензола, раствором реагента в дихлорметане. Импрегнирование выполняется при перемешивании предварительно промытого метанолом и высушенного под вакуумом (60°С, 24 ч) носителя с раствором октил(фенил)диизобутилкарбамоилметилфосфиноксида в дихлорметане в течение 2 ч с последующим удалением растворителя при 50°С под вакуумом в течение 2 ч и высушиванием продукта при 50°С под вакуумом в течение 24 ч. Полученный продукт характеризуется коэффициентами распределения при сорбционном извлечении из азотнокислых растворов La(III) - 70 мл/г и Y(III) - 10 мл/г (3М HNO3).

[A.Zhang, Qi.Hu, W.Wang, E.Kuraoka. Application of a Macroporous Silica-Based CMPO-Impregnated Polymeric Composite in Group Partitioning of Long-Lived Minor Actinides from Highly Active Liquid by Extraction Chromatography // Ind.Eng.Chem.Res. 2008. V.47. P.6158-6165].

Недостатком указанных способов импрегнирования является необходимость использования органических растворителей и последующее их удаление в вакууме.

Наиболее близким к заявляемому способу является способ получения сорбционных материалов, предназначенных для сорбционного извлечения актинидных и редкоземельных элементов, на основе углеродных нанотрубок путем их модифицирования. Способ получения этих материалов заключается в химическом закреплении комплексообразующих групп фосфорсодержащих лигандов: карбамоилметилфосфиноксидов, ацетаминфосфиноксидов; а также малонамидов, краун-эфиров, гетероциклических азотсодержащих соединений и др. на углеродных нанотрубках. Согласно данному способу модифицирование проводится в несколько стадий. Для модифицирования используют одно-, дву- или многостенные углеродные нанотрубки. Например, многостенные углеродные нанотрубки обрабатывают в течение 12-24 ч тионилхлоридом, затем этилендиамином в среде диметилформамида, затем полученный продукт суспензируют в сухом хлороформе с амином, например этиламином, и хлорацетил хлоридом при 0° в токе азота и после этого к полученному продукту добавляют реагент, содержащий комплексообразующие группы, при нагревании до 150°С. Полученный продукт промывают ацетоном, метанолом и сушат в вакууме. Данные, характеризующие сорбционную способность полученных модифицированных углеродных нанотрубок по отношению к актинидным и редкоземельным элементам в азотнокислых растворах, в материалах патента не приведены.

[WO №2009048596, B01D 59/26, B82B 1/00, опубл. 2009.04.16].

Недостатком указанного способа является многостадийность, трудоемкость и длительность процесса модифицирования углеродных нанотрубок, необходимость использования многих реагентов и растворителей.

Задачей изобретения является упрощение способа получения сорбционных материалов на основе углеродных нанотрубок, предназначенных для извлечения актинидных и редкоземельных элементов из растворов.

Поставленная задача достигается тем, что способ получения сорбционных материалов для извлечения актинидных и редкоземельных элементов из растворов предусматривает импрегнирование углеродных нанотрубок в процессе их перемешивания с фосфорорганическими лигандами в среде 3,0-8,0 М НNО3 при весовом соотношении реагент:носитель (в г/г) (0,175-1):1 с последующим промыванием полученного продукта 3-кратным количеством 3,0-8,0 М НNО3.

В качестве фосфорорганических лигандов используют лиганды класса диарил [диалкилкарбамоилметил] фосфиноксидов; моно-, ди- и триалкилфосфиноксидов; фосфониевые ионные жидкости или эфиры фосфорной кислоты, а в качестве углеродных нанотрубок используют одно-, дву- или многостенные углеродные нанотрубки, например, нанотрубоки типа "Таунит".

Обычно процесс ведут при комнатной температуре в течение не менее 2-х часов.

Весовое соотношение (г/г) реагент:носитель (0,175-1):1 обеспечивает наиболее полное удерживание реагента на носителе, благодаря чему достигается высокая сорбционная способность полученного материала по отношению к актинидами и РЗЭ в 1-6 М НNО3. Сорбционная способность продукта, полученного при соотношении реагент-носитель, большем, чем 1:1, увеличивается незначительно.

Углеродный наноматериал УНТ «Таунит»® представляет собой одномерные наномасштабные нитевидные образования поликристаллического графита в виде многостенных углеродных нанотрубок и является коммерчески доступным продуктом, характеризующимся химической, физической и радиационной устойчивостью. Технология получения углеродных нанотрубок «Таунит» разработана Тамбовским государственным университетом [Патент РФ №2296827, кл. D01F 9/27, опубл. 10.04.2007].

В качестве реагентов для закрепления на твердой фазе используются фосфорорганические реагенты класса эфиров фосфорной кислоты, например, трибутилфосфат; диарил [диалкилкарбамоилметил] фосфиноксидов, например, дифенилдибутилкарбамоилметилфосфиноксид; моно-, ди- и триалкилфосфиноксидов, например, триоктилфосфиноксид; фосфосфониевые ионные жидкости, например, хлорид тригексилтетрадецилфосфония, которые применяются для экстракционного извлечения актинидов и редкоземельных элементов из азотнокислых растворов и являются доступными для использования реагентами.

Полученный по данному способу сорбционный материал представляет собой порошок черного цвета, устойчивый в азотнокислых растворах, и обладающий способностью сорбционного извлечения актинидов и РЗЭ, что подтверждается данными по коэффициентам распределения Am(III), Pu(IV), U(VI) и Eu(III) при их сорбционном извлечении из растворов 1-6 М HNO3 в статических условиях.

Содержание реагента в продукте, определенное весовым методом, составляет от 0,15 до 0,5 г/г.

Пример 1.

2 г УНТ «Таунит» и 2 г дифенилдибутилкарбамоилметилфосфин оксида перемешивают в 20 мл 5М НNО3 в течение 2 часов. Твердый продукт отделяли от раствора центрифугированием, промывали 60 мл 5М НNО3 и высушивали на воздухе в течение 48 ч. Вес целевого продукта 3,8 г.

Содержание дифенилдибутилкарбамоилметилфосфиноксида в полученном продукте составляет 0,47 г/г (1,3 ммоль/г).

Пример 2.

Продукт, полученный аналогично примеру 1, помещают в раствор 1-6 М НNО3, содержащий радионуклиды с концентрацией 233+238U - 1,8·10-4-3,4·10-5; 241Am - (1,2-3,6)·10-8, 239Pu - 1,4·10-6-6,6·10-7 моль/л; 152Eu - (1,48-2,04)·104 Бк/мл. Сорбционное извлечение проводят путем механического перемешивания жидкой и твердой фазы в течение 1 часа при соотношении V:m=20-100 мл/г. После концентрирования раствор и твердую фазу разделяют центрифугированием в течение 15 мин и определяют содержание радионуклидов в растворе и твердой фазе методом α-спектрометрии. Полученный материал характеризуют коэффициентами распределения при сорбционном извлечении (V:m=100; 3М HNO3): Pu(IV) - 4,5·104, U(VI) - 3,0·104, Am(III) - 9,9·103, Eu(III) - 1,5·103 мл/г. Коэффициенты распределения рассчитывают по формуле где А0 и As - концентрации радионуклидов в водном растворе до и после установления равновесия, m - масса сорбента, г; V - объем раствора, мл.

Пример 3

2 г УНТ «Таунит» и 1 г дифенилдибутилкарбамоилметилфосфин оксида перемешивали в 20 мл 5М НNО3 в течение 2 часов. Твердый продукт отделяли от раствора центрифугированием, промывали 3-кратным количеством - 60 мл 5М НNO3 и высушивали на воздухе в течение 48 ч. Вес целевого продукта 3,0 г. Содержание дифенилдибутилкарбамоилметилфосфин оксида в полученном продукте 0,33 г/г (0,9 ммоль/г). Аналогично примеру №2 продукт характеризуется коэффициентами распределения при сорбционном извлечении (3М НNO3; V:m=100): Pu(IV) - 1,5·104, U(VI) - 2,0·104, Am(III) - 4,0·103 мл/г.

Пример 4

2 г УНТ «Таунит» и 0,35 г дифенилдибутилкарбамоилметилфосфин оксида перемешивали в 20 мл 5М НNО3 в течение 2 часов. Твердый продукт отделяли от раствора центрифугированием, промывали 60 мл 5М НNO3 и высушивали на воздухе в течение 48 ч. Вес целевого продукта - 2,35 г. Содержание дифенилдибутилкарбамоилметилфосфин оксида в полученном продукте 0,15 г/г (0,4 ммоль/г). Аналогично примеру №2 продукт характеризуется коэффициентами распределения при сорбционном извлечении (ЗМ НNО3; V:m=100): Pu(IV) - 4,4·103, U(VI) - 4,0·103, Am(III) - 2,8-102 мл/г.

Пример 5.

2,5 г УНТ «Таунит» и 2,5 г триоктилфосфин оксида перемешивают в 25 мл раствора 6М НNО3 в течение 2 часов. Твердый продукт отделяют от раствора центрифугированием, промывают раствором 6М НNО3 и высушивают при 70°С в течение 20 ч. Вес целевого продукта 4,8 г. Содержание триоктилфосфин оксида в полученном продукте составляет 0,48 г/г (1,3 ммоль/г). Аналогично примеру №2 продукт характеризуется коэффициентами распределения при сорбционном извлечении (1М НNO3; V:m=100): Pu(IV) - 1,9·104, U(VI) - 1,2·104, Am(III) - 20,8, Eu(III) - 48,9 мл/г.

Пример 6.

1 г УНТ «Таунит» и 0,7 мл (0,64 г) хлорида тригексил(тетрадецил) фосфония перемешивают в 10 мл раствора 3М HNO3 в течение 2 часов. Твердый продукт отделяют от раствора центрифугированием, промывают раствором 3М НNО3 и высушивают на воздухе в течение 48 ч. Вес целевого прдукта 1,57 г. Содержание хлорида тригексил (тетрадецил) фосфония в полученном продукте составляет 0,36 г/г (0,7 ммоль/г). Аналогично примеру №2 продукт характеризуется коэффициентами распределения при сорбционном извлечении (3М НNО3; V:m=100): Pu(IV) - 1,6·103, U(VI) - 25,7 мл/г.

Пример 7.

0,5 г УНТ «Таунит» и 0,5 мл (0,45 г) хлорида тригексил(тетрадецил) фосфония перемешивают в 5 мл раствора 3М HNO3 в течение 2 часов. Твердый продукт отделяют от раствора центрифугированием, промывают раствором 3М НNO3 и высушивают на воздухе в течение 48 ч. Вес целевого продукта 0,93 г. Содержание хлорида тригексил (тетрадецил) фосфония в полученном продукте составляет 0,46 г/г (0,9 ммоль/г). Аналогично примеру №2 продукт характеризуется коэффициентами распределения при сорбционном извлечении (V:m=100): Pu(IV) - 2,1·103 (3М НNО3), U(VI) - 65 (1М HNO3) мл/г.

Пример 8

0,5 г УНТ «Таунит» и 0,5 мл (0,49 г) трибутилфосфата перемешивают в 5 мл раствора 8М НNО3 в течение 2 суток. Твердый продукт отделяют от раствора центрифугированием, промывают раствором 6М НNО3 и высушивают при 70°С в течение 24 ч. Вес целевого продукта 0,71 г. Содержание трибутилфосфата в полученном продукте составляет 0,30 г/г (1,1 ммоль/г). Аналогично примеру №2 продукт характеризуются коэффициентами распределения при сорбционном извлечении: Pu(IV) - 1,6·102 (V:m=100; 1М НNO3), U(VI) - 69 (V:m=20; 6М НNO3) мл/г.

Преимущество предлагаемого способа получения композиционного материала заключается в том, что импрегнирование выполняется в одну стадию в процессе перемешивания углеродных нанотрубок с модифицирующим реагентом в растворе 3-8М НNО3. Полученный продукт характеризуется устойчивостью в азотнокислых растворах и способностью сорбционного извлечения актинидов и редкоземельных элементов. Импрегнирование выполняется без использования органических растворителей или других реагентов и дополнительных операций.

1. Способ получения сорбционного материала на основе углеродных нанотрубок для извлечения актинидных и редкоземельных элементов, предусматривающий импрегнирование углеродных нанотрубок фосфорорганическими лигандами в процессе перемешивания в среде 3,0-8,0 М НNО3 в весовом соотношении реагент-носитель (0,175-1,0):1,0 с последующим промыванием полученного продукта 3-кратным количеством 3,0-8,0 М НNО3.

2. Способ по п.1, отличающийся тем, что в качестве импрегнируемых лигандов используют фосфорорганические лиганды класса диарил[диалкилкарбамоилметил]фосфиноксидов, моно-, ди- и триалкилфосфиноксидов, фосфониевые ионные жидкости или эфиры фосфорной кислоты.

3. Способ по п.1, отличающийся тем, что в качестве углеродных нанотрубок используют одно-, дву- или многостенные углеродные нанотрубки, например нанотрубки типа "Таунит".

4. Способ по п.1, отличающийся тем, что процесс ведут при комнатной температуре в течение не менее 2 ч.



 

Похожие патенты:

Изобретение относится к каталитическим производствам нановолокнистых углеродных материалов и водорода и может быть использовано в нанотехнологиях, химической промышленности, водородной энергетике.

Изобретение относится к медицине, а именно к трансплантологии, травматологии, общей хирургии, стоматологии, комбустиологии, пластической хирургии, косметологии. .

Изобретение относится к электронно-измерительной технике и нанотехнологиям и предназначено в том числе для использования со сканирующим зондовым микроскопом (СЗМ) при исследовании микро- и нанорельефа поверхности.

Изобретение относится к способу прогнозирования фотостабильности коллоидных полупроводниковых квантовых точек со структурой ядро-оболочка в кислородсодержащей среде, включающий измерение кинетик фотолюминесцентного сигнала квантовых точек для тестируемой и эталонной партий, определение для указанных партий значений параметра, характеризующего скорость спада фотолюминесцентного сигнала во времени.
Изобретение относится к нанокомпозиту на основе полиэтилена, к способам его получения и может быть использовано в пищевой, химической промышленности, в медицине при производстве новых материалов с улучшенными физико-механическими свойствами и с низкой газопроницаемостью (повышенными барьерными характеристиками).

Изобретение относится к области металлургии, в частности к технологии получения нанопорошков металлов с повышенной запасенной энергией, и может быть использовано для повышения реакционной способности нанопорошков при спекании, горении в энергосберегающих технологиях.
Изобретение относится к литейному производству и может быть использовано для получения чугунных отливок с модифицированным поверхностным слоем. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .
Изобретение относится к составам текучих композиций, реагирующих на действие магнитного поля резким изменением их реологических свойств, и может найти применение в машиностроении, приборостроении, в частности, для финишной обработки оптических поверхностей в магнитном поле.

Изобретение относится к области микробиологии. .

Изобретение относится к области радиохимии. .

Изобретение относится к процессу разделения изотопов лития ( 6Li и 7Li) и может найти широкое применение в химической и ядерной технологии, учитывая их большую потребность в изотопно чистых соединениях (6Li незаменим при производстве трития, a 7Li является перспективным теплоносителем для реакторов на быстрых нейтронах).

Изобретение относится к технологиям получения и использования трифторида бора, например для разделения изотопов 10В и 11В. .

Изобретение относится к способу снижения выбросов от отработавшего газа и к устройству для снижения выбросов от отработавшего газа. Изобретение включает создание циркуляции отработавшего газа между сырьевой мельницей и холодильником клинкера. В холодильнике клинкера по меньшей мере часть выбросов направляется в цементную обжиговую печь, в которой эти выбросы удаляются за счет выжигания и/или поглощения. Изобретение обеспечивает снижение выбросов загрязняющих веществ в процессе помола сырья. 3 н. и 12 з.п. ф-лы, 1 ил.

Описывается конформный фильтр, имеющий множество слоев сорбента, ориентированных перпендикулярно внутренней боковой поверхности фильтра, которая соответствует смежной поверхности, такой как лицо пользователя, когда он прикреплен к респиратору. Внутренняя сторона фильтра может почти соответствовать изогнутой форме сопряженной поверхности. Поскольку слои сорбента ориентированы перпендикулярно внутренней боковой стороне поверхности, конформная конфигурация может быть достигнута без изгиба слоев сорбента и с удержанием постоянного времени пребывания слоя по всей площади поперечного сечения воздушного потока, тем самым обеспечивая равномерное распределение воздуха. Уменьшение толщины слоя также достигается через эту конфигурацию, которая, следовательно, снижает общее падение давления через фильтр. Другие варианты осуществления описаны и заявлены. 13 з.п. ф-лы, 14 ил.

Изобретение относится к катализаторам на основе перфторированного сополимера и мезопористого алюмосиликата, способу приготовления катализатора и способу олигомеризации альфа-олефинов, более конкретно альфа-олефинов с числом атомов углерода, превышающим или равным 6, предпочтительно между 8 и 14

Изобретение относится к обработке металлов давлением, в частности к способам получения металлических втулок

Изобретение относится к технологии получения нанодисперсных порошков

Изобретение относится к средствам, предназначенным для маркировки металлических изделий, выпускаемых в промышленности или получаемых в результате иной хозяйственной деятельности, для обеспечения возможностью проверки легальности их изготовления

Изобретение относится к самособирающимся сублитографическим наноразмерным структурам в упорядоченной периодической решетке и к способам их изготовления

Изобретение относится к области получения новых сорбционных материалов на основе углеродных нанотрубок и может быть использовано для извлечения актинидных и редкоземельных элементов из растворов

Наверх