Тепломассообменный аппарат


 


Владельцы патента RU 2463097:

Общество с ограниченной ответственностью "ТюменНИИгипрогаз" (RU)

Изобретение относится к аппаратам для проведения тепломассообменных процессов, в частности для процессов теплообмена в системе газ-жидкость при подготовке газового конденсата и нефти. Тепломассообменный аппарат включает горизонтально расположенные друг над другом емкость дегазации и кожухотрубный теплообменник, соединенные между собой патрубком выхода парожидкостной смеси из емкости дегазации и переливной трубой из кожухотрубного теплообменника, образующие единую конструкцию. Емкость дегазации снабжена U-образным трубным подогревателем жидкости, переливной перегородкой, патрубком входа газожидкостной смеси и патрубком слива жидкости. U-образный трубный подогреватель жидкости размещен ниже верхней кромки переливной перегородки. Кожухотрубный теплообменник снабжен патрубками входа, выхода хладагента и патрубком выхода газа. Переливная труба теплоизолирована, ее нижний торец расположен ниже верхней кромки переливной перегородки. Технический результат: повышение эффективности работы аппарата за счет интенсификации процессов теплообмена и дегазации жидкости. 1 ил.

 

Изобретение относится к аппаратам для проведения тепломассообменных процессов, в частности для процессов теплообмена в системе газ-жидкость при подготовке газового конденсата и нефти.

Известен тепломассобменный аппарат, содержащий корпус с переливными тарелками, выполненными в виде ступеней, каждая из которых включает горизонтальную и наклонную секции, при этом горизонтальные секции выполнены сплошными и расположены между рядами труб, а наклонные секции выполнены перфорированными и разделены трубами на отдельные секции (АС 1200924).

Недостатком известного тепломассообменного аппарата является низкая эффективность.

Техническим результатом заявляемого изобретения является повышение эффективности работы аппарата за счет интенсификации процессов теплообмена и дегазации жидкости.

Поставленный технический результат достигается тем, что в тепломассообменном аппарате, включающем горизонтально расположенные друг над другом емкость дегазации и кожухотрубный теплообменник, соединенные между собой патрубком выхода газожидкостной смеси из емкости дегазации и переливной трубой из кожухотрубного теплообменника, образующие единую конструкцию, емкость дегазации снабжена U-образным трубным подогревателем жидкости, переливной перегородкой, патрубком входа газожидкостной смеси и патрубком слива жидкости, U-образный трубный подогреватель жидкости размещен ниже верхней кромки переливной перегородки, кожухотрубный теплообменник снабжен патрубками входа, выхода хладагента и патрубком выхода газа, переливная труба теплоизолирована, ее нижний торец расположен ниже верхней кромки переливной перегородки.

На чертеже изображен тепломассообменный аппарат.

Тепломассообменный аппарат состоит из двух горизонтально расположенных друг над другом емкости дегазации 1 и кожухотрубного теплообменника 2, соединенных между собой патрубком выхода газожидкостной смеси 3 из емкости дегазации 1 и переливной трубой 4 из кожухотрубного теплообменника 2, образуя тем самым единую конструкцию. Емкость дегазации 1 снабжена U-образным трубным подогревателем жидкости 5, переливной перегородкой 6, патрубком входа газожидкостной смеси 7 и патрубком слива жидкости 8. U-образный трубный подогреватель жидкости 5 размещен ниже верхней кромки переливной перегородки 6. Кожухотрубный теплообменник содержит переднюю камеру 9, заднюю камеру 10, трубную решетку 11 с закрепленным в ней пучком труб 12. Кожухотрубный теплообменник 2 снабжен патрубками входа 13, выхода 14 хладагента и патрубком выхода газа 15. Переливная труба 4 теплоизолирована, ее нижний торец расположен ниже верхней кромки переливной перегородки 6.

Тепломассообменный аппарат работает следующим образом.

В емкость для дегазации 1 через патрубок входа парожидкостной смеси 7 подают газожидкостную смесь. Жидкостная часть смеси заполняет внутреннюю полость емкости для дегазации 1 и подогревается U-образным трубным подогревателем жидкости 5. При этом легкокипящие фракции, например метан, этан, пропан, часть тяжелых фракций через патрубок выхода парожидкостной среды 3 поступают в переднюю камеру 9 и далее в трубное пространство пучка труб 12. Одновременно с этим в затрубное пространство 16 кожухотрубного теплообменника 2 подают хладагент, например холодный газ, который входит через патрубок входа хладагента 13 и выходит через патрубок выхода хладагента 14. При охлаждении газожидкостной смеси происходит конденсация жидкой фазы. Далее газ и сконденсировавшаяся жидкость из пучка труб 12 поступают в заднюю камеру 10. Газ через патрубок выхода газа 15 уходит из аппарата, а жидкость по переливной трубе 4 стекает в емкость дегазации 1. Нагретая и дегазированная жидкость через переливную перегородку 6 поступает к патрубку слива жидкости 8 и сливается из аппарата. Размещение U-образного трубного подогревателя жидкости 5 ниже верхней кромки переливной перегородки 6 позволяет увеличить эффективность теплообмена. Выполнение переливной трубы 4 теплоизолированной препятствует газообразованию в ее внутренней полости. Использование в тепломассобменном аппарате противоточного кожухотрубного теплообменника 2 значительно увеличивает эффективность тепломассообмена за счет увеличения среднего перепада температур между хладагентом и газом дегазации.

Тепломассообменный аппарат, включающий горизонтально расположенные друг над другом емкость дегазации и кожухотрубный теплообменник, соединенные между собой патрубком выхода газожидкостной смеси из емкости дегазации и переливной трубой из кожухотрубного теплообменника, образующие единую конструкцию, емкость дегазации снабжена U-образным трубным подогревателем жидкости, переливной перегородкой, патрубком входа газожидкостной смеси и патрубком слива жидкости, U-образный трубный подогреватель жидкости размещен ниже верхней кромки переливной перегородки, кожухотрубный теплообменник снабжен патрубками входа, выхода хладагента и патрубком выхода газа, переливная труба теплоизолирована, ее нижний торец расположен ниже верхней кромки переливной перегородки.



 

Похожие патенты:

Изобретение относится к установкам для отделения газа от жидкости, перекачиваемой по трубопроводу, в частности для отделения воздуха и газовоздушной смеси от нефтепродуктов.

Изобретение относится к нефтегазодобывающей промышленности и рекомендуется для очистки нефти и нефтяного газа. .

Изобретение относится к нефтяной промышленности и может найти применение при транспорте нефтяной эмульсии на объектах нефтедобычи, транспортировки и подготовки нефти.

Изобретение относится к автоматическим системам регулирования и может быть использовано в нефтедобывающей промышленности, в установках подготовки и переработки нефти и газа.

Изобретение относится к системе разделения отходов и может использоваться для удаления твердых и жидких отходов из туалетов в самолетах с выведением не содержащего влаги потока воздуха.

Изобретение относится к области газовой промышленности и является усовершенствованным способом промысловой подготовки продукции газоконденсатных залежей. .

Изобретение относится к установкам обработки углеводородного сырья и может быть использовано в нефтедобывающей промышленности при промысловой очистке сероводородсодержащей нефти от сероводорода и низкомолекулярных меркаптанов.

Изобретение относится к сепарации продукции, содержащей компоненты с разной плотностью, а более конкретно касается способа сепарации и учета продукции, содержащей газообразную фазу и две жидкие фазы с разной плотностью.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для снижения пульсации, вызываемой газовыми пробками, при транспорте газожидкостной смеси по рельефной местности.

Изобретение относится к нефтяной промышленности и может найти применение при разделении нефтяной эмульсии на объектах нефтедобычи, транспортировки и подготовки нефти

Изобретение относится к нефтедобывающей промышленности и может быть использовано при промысловой подготовке сырой нефти

Изобретение относится к области добычи природного газа и подготовке газа и газового конденсата к дальнему транспорту

Изобретение относится к технологии получения термосвариваемых пластиковых пленочных и листовых структур и может быть использовано для упаковки чувствительных к кислороду продуктов

Изобретение относится к способу и установке для получения аммиака из смеси аммиак, H2S и/или CO2-содержащего кислого газа и легкокипящих водорастворимых органических компонентов

Изобретение относится к области теплоэнергетики и может быть использовано в малогабаритных отопительных и блочно-модульных котельных для удаления коррозионно-активных газов из питательной воды для паровых и водогрейных котлов, а также подпиточной воды для тепловых сетей

Изобретение относится к области газовой промышленности. Способ промысловой подготовки продукции газоконденсатных залежей включает первичную сепарацию пластовой смеси, охлаждение газа, его низкотемпературную сепарацию, подачу газового конденсата в колонну деэтанизации, после чего деэтанизированный газовый конденсат охлаждают на первой ступени нестабильным газовым конденсатом первичной сепарации, а затем на второй ступени его охлаждают до отрицательной температуры нестабильным газовым конденсатом низкотемпературной сепарации. Кроме того, для подачи в качестве орошения в колонну деэтанизации используют подготовленный нестабильный газовый конденсат низкотемпературной сепарации с температурой от -10 до +10°C. Установка содержит линию 24 подачи пластовой смеси, первичный сепаратор 2, выход которого для газового конденсата последовательно соединен трубопроводами для газового конденсата с первым трехфазным разделителем 3, выветривателем 4 и первым теплообменником 11, а выход первого трехфазного разделителя 3 для газа соединен с входом низкотемпературного сепаратора 6. Выход первого теплообменника 11 соединен последовательно трубопроводами для газового конденсата с первой буферной емкостью 12, вторым теплообменником 13 и зоной питания колонны 14 деэтанизации. Выход низкотемпературного сепаратора 6 для газового конденсата последовательно соединен трубопроводами для газового конденсата со вторым трехфазным разделителем 7, третьим и четвертым теплообменниками 15 и 16, второй буферной емкостью 17 и зоной орошения колонны 14 деэтанизации. Выход колонны 14 деэтанизации для газового конденсата последовательно соединен трубопроводами с охлаждающими пространствами второго, первого и четвертого теплообменников 13, 11 и 16. Изобретение позволяет охладить деэтанизированный газовый конденсат перед подачей в трубопровод внешнего транспорта до отрицательной температуры; снизить унос фракции С3+ с газами деэтанизации за счет понижения температуры верха колонны 14 деэтанизации до температуры от (плюс) 30 до (плюс) 5°C при использовании в качестве орошения нестабильного газового конденсата с температурой от (минус) 10 до (плюс) 10°C. 2 н. и 5. з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики и машиностроения. Устройство для дегазации, включающее вакуумный резервуар (1), содержащий подающий патрубок (19) для подачи газосодержащего вещества и отводящий патрубок (15) для отвода дегазированного вещества, и распределитель (10) потока газосодержащего вещества, расположенный в вакуумном резервуаре (1), дополнительно содержит приемный резервуар (2), установленный под вакуумным резервуаром (1); питающий клапан (9), установленный в подающем патрубке (19); перепускной клапан (3), установленный между вакуумным резервуаром (1) и приемным резервуаром (2) и сообщающийся с ними, причем вакуумный резервуар (1) выполнен с возможностью его вакуумирования и наддува через ниппель (5), расположенный в верхней части вакуумного резервуара (1); отводящий патрубок (15) расположен в нижней части премного резервуара (2); распределитель (10) потока газосодержащего вещества выполнен в виде плоского диска (10), выполненного с возможностью вращения посредством электропривода, и расположен в верхней части вакуумного резервуара (1), а вакуумный и приемный резервуары каждый снабжены определительными средствами для определения уровня дегазируемого вещества в соответствующем резервуаре. Изобретение позволяет повысить производительность устройства дегазации благодаря непрерывности процесса, сократить энергетические затраты и упростить конструкцию. 5 з.п. ф-лы, 4 ил.
Наверх