Способ карбонитрирования деталей из высокохромистых сталей



Способ карбонитрирования деталей из высокохромистых сталей
Способ карбонитрирования деталей из высокохромистых сталей
Способ карбонитрирования деталей из высокохромистых сталей
Способ карбонитрирования деталей из высокохромистых сталей
Способ карбонитрирования деталей из высокохромистых сталей
Способ карбонитрирования деталей из высокохромистых сталей

 


Владельцы патента RU 2463381:

Федеральное государственное образовательное учреждение высшего профессионального образования "Калининградский государственный технический университет" (RU)

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей, инструмента, оснастки в твердых карбюризаторах. Детали помещают в контейнер и засыпают порошковой смесью, состоящей из следующих компонентов: активированного древесного угля, карбамида и трилона-Б. Используют порошковую смесь, в которой указанные компоненты содержатся в соотношении 1:1:1. Перед помещением в контейнер с порошковой смесью детали покрывают обмоткой из поливинилхлоридной клейкой ленты, на липкую часть которой предварительно наносят порошковую смесь. После засыпки деталей порошковой смесью в контейнере его переносят в вакуумную реторту с остаточным давлением 50-80 Па, предварительно разогретую до температуры 980-1000°С, и выдерживают в течение 4-6 часов при температуре карбонитрирования 960-980°С. Затем проводят закалку в масло от температуры карбонитрирования, после закалки проводят охлаждение деталей в контейнере на воздухе, затем проводят отпуск на воздухе при температуре 250-320°С в течение 2-3 часов. Улучшаются основные эксплуатационные свойства карбонитрированных деталей из высокохромистых сталей, а именно повышаются твердость и износостойкость. 6 ил., 1 табл., 3 пр.

 

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей, инструмента, оснастки в твердых карбюризаторах, в частности в порошковых смесях, на основе активированных древесных углей. Оно может найти применение в приборостроении, производстве электрических реактивных двигателей малой тяги, а так же в электронике, на малых ремонтных предприятиях и ювелирных цехах.

Известны способы диффузионного насыщения сталей и сплавов в порошковых смесях с введением в составы хлорсодержащих соединений - хлористого аммония, хлористого натрия для депассивации поверхности склонных к окислению хромистых сталей и титановых сплавов (Химико-термическая обработка металлов и сплавов. Справочник. Бориченок Г.В., Васильев Л.А., Ворошин Л.Г. и др. М.: Металлургия, 1981. 424 с.).

Описанные способы получили ограниченное применение из-за недостаточной технологичности и универсальности.

Известны составы и способы активизации диффузионного насыщения сталей с содержанием хрома до 17% (RU №2314363 С1, МПК С23С 8/76, опубл. 10.01.2008 г.) и титановых сплавов (RU №2378411 С2, МПК С23С 8/76, опубл. 20.08.2009 г.) в порошковых смесях на древесноугольной основе, включающих активированный древесный уголь и добавки-активаторы - карбамид, трилон-Б, триэтаноламин.

Вышеописанные технические решения имеют следующий недостаток: невысокая степень депассивации поверхностей названных сталей и сплавов, и, как следствие, замедление скорости насыщения поверхностей и необходимость заключительного шлифования, заточки рабочих поверхностей для снятия менее твердого слоя «внутреннего окисления» глубиной до 0,15 мм.

За ближайший аналог взят способ карбонитрирования деталей из высокохромистых сталей, включающий помещение деталей в контейнер и их засыпку порошковой смесью, состоящей из активированного древесного угля, карбамида и трилона-Б. Температура карбонитрирования - 960-980°С (RU 2237744 С1, МПК С23С 8/76, 10.10.2004, формула, таблица, пример 1).

К недостаткам описанного способа можно отнести невысокие эксплуатационные свойства деталей, обработанных карбонитрированием, в частности, их недостаточная твердость и износостойкость, что является следствием нестабильности толщины насыщенного поверхностного слоя и его неоднородности по составу и количеству карбидов.

Изобретение решает задачу улучшения основных эксплуатационных свойств карбонитрированных деталей из высокохромистых сталей, а именно повышение твердости и износостойкости, за счет увеличения стабилизации толщины насыщенного поверхностного слоя и повышения его однородности по составу и количеству карбидов.

Для получения необходимого технического результата в известном способе карбонитрирования деталей из высокохромистых сталей, включающем помещение деталей в контейнер и их засыпку порошковой смесью из активированного древесного угля и карбамида, и трилона-Б при температуре карбонитрирования 960-980°С, предлагается использовать упомянутую порошковую смесь, в которой компоненты содержатся в соотношении 1:1:1, перед помещением в контейнер с порошковой смесью детали покрывать обмоткой из поливинилхлоридной клейкой ленты, на липкую часть которой предварительно наносить подготовленную для карбонитрирования порошковую смесь. После засыпки деталей в контейнере порошковой смесью, его предлагается переносить в вакуумную реторту с остаточным давлением 50-80 Па, предварительно разогретую до температуры 980-1000°С, и выдерживать в течение 4-6 часов при температуре карбонитрирования 960-980°С, затем проводить закалку в масле от температуры карбонитрирования, после закалки проводить охлаждение деталей в контейнере на воздухе, а затем проводить отпуск на воздухе при температуре 250-320°С в течение 2-3 часов.

Поставленная задача в известном способе химико-термической обработки с использованием порошковых смесей из активированного древесного угля и азотоуглеродосодержащих компонентов - карбамида и трилона-Б, решалась последовательным выполнением следующих операций: механически обработанные в окончательный размер детали покрывают обмоткой из полихлорвинильной клейкой ленты. Подготовленную для карбонитрирования порошковую смесь из карбамида, трилона - Б, толченого древесного угля предварительно наносят на клейкую упаковку садки. После чего переносят контейнер с деталями в вакуумную реторту малоэнергоемкой электропечи при остаточном давлении 50-80 Па, предварительно разогретую до 980-1000°С, и выдерживают там в течение 4-6 часов при температуре карбонитрирования 960-980°С. Закалку после карбонитрирования лучше проводить в масле от температуры карбонитрирования, но можно и на воздухе в контейнере. После чего детали охлаждают в контейнере на воздухе. Отпуск проводят при температуре 250-320°С в течение 2-3 часов на воздухе.

При проведении карбонитрирования деталей предлагаемым способом происходят следующие химико-термические процессы.

Вначале с рабочими поверхностями деталей непосредственно контактирует хлорсодержащее органическое вещество - поливинилхлорид [-CH2CHCl-]n, плотность - 1,40 мг/см3, с температурой плавления 150-200°С, разлагающееся выше 110°C с выделением хлористого водорода НСl. В процессе прогрева, неизотермического разложения до температур высокотемпературного карбонитрирования, в начальной стадии активно идет депассивация поверхностей высокохромистой стали. К моменту диссоциации карбамида (NН2)2СО и трилона - Б (C10H8O10)Na2N2 поверхности активированы, подготовлены к адсорбции атомарных углерода и азота.

После прогрева, при высокотемпературной выдержке атомарный углерод поливинилхлорида, избыточный углерод и азот активнее диффундируют в присутствии щелочного натрия с образованием избыточных карбидов глобулярных, сросшихся типа (Fe, Сr)7С3, (Fе, Сr)23С6 в сталях марки 20Х13, 30Х13, 14Х17Н2. Как результат активации и стабилизации массопереноса углерода и азота растет скорость карбонитрирования, количество упрочняющих фаз и слоев.

Нагрев и выдержка контейнеров в вакуумной реторте, разогретой до 980-1000°С, позволяет улучшить условия диссоциации компонентов насыщающей среды по следующим схемам:

поливинилхлорид [СН2-CHl]n→(С2Н2)n+n НСl,

2Н2→n2Сaт.+nН2

карбамид (NH2)2CO→NН3+СО+0,5 Н2+0,5 N2

трилон -Б (C10H8O10)Na2N2→9СО+3СН4+0,5N2+1,5Н2+-Na2O

На прилагаемых к описанию графических материалах изображено:

фиг.1 - эскиз малоэнергоемкой печи с вакуумной ретортой;

фиг.2 - микроструктура карбидного слоя на стали 20Х13 с высоким содержанием карбидов х150;

фиг.3 - микроструктура карбидного слоя на стали 20Х13 с содержанием карбидов и карбонитридов 80-90% ×300;

фиг.4 - графики распределения карбидов и углерода в поверхностном карбонитрированном слое стали 20Х13 в зависимости от температуры карбонитрирования: кривые I-980°С; II-990°С; III-1000°С;

фиг.5 - эскиз роликов закаточных машин консервирования рыбопродуктов из стали 20Х13, карбонитрированных по предложенному способу;

фиг.6 - микроструктура магнитомягкой стали 16Х-ВИ после карбонитрирования в порошковой смеси, предварительно обмотанной полихлорвидной лентой при температуре карбонитрирования 960°С с выдержкой в печи 4 часа ×100.

На схемах приняты следующие обозначения:

1 - вакуумная реторта; 2 - быстросъемная крышка; 3 - нихромовые нагреватели; 4, 5 - контейнеры с упакованными деталями для карбонитрирования.

В вакуумной реторте 1 малоэнергоемкой печи с нихромовыми нагревателями 3, оборудованной быстросъемной крышкой 2, устанавливают контейнеры 4 и 5 с деталями. Выбранный вакуум порядка 50-80 Па позволяет стабилизировать диссоциацию обмотки деталей в процессе прогрева в смеси, эвакуацию продуктов газообразования через вакуумный вывод и вакуумный насос по трубопроводу за пределы участка химико-термической обработки. Время выдержки контейнеров в вакуумной реторте выбрано в пределах 4-6 часов, что достаточно, как показали проведенные испытания, для формирования карбидных слоев с высоким содержанием карбидов (фиг.2) повышенной микротвердости.

В процессе выдержки при пониженном давлении ускоряются процессы диффузионного насыщения углеродом и азотом из общего объема порошковой смеси контейнера, в котором распределены упрочняемые детали после полного израсходования компонентов пластифицированной поливинилхлоридной обмотки с наполнителем, количество карбидов и карбонитридов превышает 80-90% при микротвердости по толщине слоя различных легированных хромсодержащих сталей выше всех известных способов химико-термической обработки в твердых древесноугольных составах с активаторами (фиг.3 и фиг.4).

Условия закалки от температур карбонитрирования через воздух в масле необходимы для повышения прочности и вязкости высокотемпературных сталей в сердцевине, а при охлаждении в контейнере на воздухе для получения высоких магнитных свойств магнитомягких высокохромистых сталей типа 16Х, 10Х13 в основе износостойкой поверхности с мелкодисперсными карбидами.

Оптимальными температурами для снижения напряжений карбонитрированных сталей при отпуске являются 250-370°С, охлаждение на воздухе.

Сравнительный анализ полученных показателей, характеризующих эксплуатационные свойства карбонитрированных деталей из высокохромистых сталей по предлагаемому способу и по способу, описанному в ближайшем аналоге, приводится в таблице.

Таблица
Способ химико-термической обработки, условия карбонитрирования и последующей термообработки *) Суммарная (эффективная) толщина карбидного слоя, мкм Микротвердость, Н0,5H слоя Тип и количество карбидов, %-вес Износостойкость, **) (абразивное трение)
1 2 3 4 5
Предложенный 1120-
- с обмоткой полихлорвинидной 1090-
пленкой с нанесением порошка 1040- (Fe,Сr)7Сз,
из равных количеств карбамида, 506-580 980- (Fе,Сr)23С6 1,6-1,8
трилона-Б, угля активированного 840- 81%-85%
древесного, 1000°С 6 часов, в
вакууме 80Па, закалка в масле,
отпуск 250°С, 3 часа. -
Известный 944-
- без пленки, в контейнере из 840- (Fе,Сr)7С3,
смеси карбамид, трилон-Б по 310-370 807- 68%-69% 1,0
15%, уголь активированный 767
древесный - остальное, 960°С, 6 час,
охлаждение - воздух
*) - энергоемкость и стоимость обработки в предложенном способе 0,7 в сравнении с известным способом
**) - при трении о супермикронную абразивную бумагу, 15 мин, относительная.

При обработке по предложенному способу диффузионный слой на стали 20Х13 был абсолютно ровным по толщине, скорость формирования карбидного слоя составила 0,11-0,12 мм/ч против 0,07-0,08 мм/ч при обработке в известном способе без полихлорвинидной ленты.

Осуществление способа иллюстрируется примерами производственных испытаний и обработки мелкоразмерных деталей в условиях малых предприятий.

Пример 1.

Ролики закаточных машин консервирования рыбопродуктов из стали 20Х13, диаметром 60-80 мм после механической обработки по посадочному и профильному наружному диаметрам карбонитрировали по предложенному способу. Поливинилхлоридной лентой по ГОСТ 16214-86 с нанесенной порошковой смесью из равных объемных количеств толченого древесного активированного угля по ГОСТ 20464-73, карбамида по ГОСТ по ГОСТ 6691-77 и трилона - Б по ГОСТ 10652-73 проводили обмотку в 2 слоя наружной рабочей поверхности. После укладки роликов в цилиндрические контейнеры проводили засыпку этим же порошковым составом, закрывали слоем асбеста и помещали в реторту вакуумной печи (фиг.1), разогретую до 1000°С, и вакуумным плунжерным насосом создавали вакуум 80 Па. Время выдержки составило 6 часов, далее проводили закалку, высыпая детали из контейнера в машинное масло. Отпуск проводили в малоэнергоемкой печи Пл-10 при 270°С в течение 3 часов.

Обработка позволила сформировать на рабочей поверхности роликов износостойкий, равномерный по глубине карбидный слой повышенной твердости H0,5H=1050-1020 с монотонным снижением к основе Н0,5н 890…795…640…480…(фиг.2×150). Микротвердость, прочность основы превосходили на 20-25% аналогичные физикомеханические свойства, получаемые в известном способе химико-термической обработки. Длительность эксплуатации роликов, вследствие повышения износостойкости, в том числе при повышенной влажности в условиях морского промысла возросла в 1,4-1,5 раза в сравнении со стандартными из сталей Х12, 95Х18. При этом снизились энергозатраты, трудоемкость обработки в условиях тарного комбината на 30-35%, обеспечилась экологическая чистота процесса химико-термической обработки.

Пример 2.

Концевой инструмент, шорожки для снятия и зачистки облоев после горячей штамповки и литья деталей из алюминиевых сплавов типа АЛ-2, АЛ-9, АК-4 изготовляли токарной обработкой с последующей накаткой остроугольной режущей части из стали 20Х13 и 30Х13 и упрочняли карбонитрированием по предложенному способу.

Порошковую смесь из карбамида, трилона-Б, древесного угля, взятых в соотношении 1:1:1, наносили на ленту изоляционную поливинил-хлоридную и проводили обмотку резьбовой, остроугольной, режущей части в один слой. Затем помещали в контейнеры для карбонитрирования, засыпая порошковой смесью этого же состава, и переносили в печь с вакуумной «горячей» ретортой СШОЛ-ВНЦ, разогретую до 980°С, вакуумировали печь до 50 МПа откачкой механическим центробежным насосом. После прогрева до 980°С выдерживали в течение 4 часов и закаливали, разгерметизируя реторту, детали из контейнера охлаждали в масле. В результате обработки на режущих поверхностях получены диффузионные карбидные слои с содержанием карбидов до 85% переменного состава, содержащих (Fe, Сr)7С3, (Fе, Сr)23С6 твердостью Н0,5H 1480-1510. Прочность основного металла составила σв=1580-1600 МПа, что обеспечивало жесткость концевых шорожек при скоростной заточке и при шлифовании тонкостенных деталей из керамик, повышалась чистота, точность обработки. При этом, как показано на фиг.3, фиг.4, микроструктура поверхностей и по всей глубине слоя оптимальна для повышения контактной прочности, износостойкости. Обработка при карбонитрировании в пределах заявляемых температур обработки и времени выдержки 4-6 часов оптимальна для получения карбонитридных слоев с высоким содержанием углерода в карбидах (фиг.4). За пределами заявляемых температур и длительностей выдержки эффект химико-термической обработки существенно снижался.

Предложенный способ позволил за счет температурной активизации поверхностей хлорсодержащим компонентом высокохромистых сталей формировать диффузионные слои с содержанием карбидов до 80-90% (фиг.4). В результате обработки износостойкость шорожек превзошла аналогичные, стандартизованные из У 10, У 12, в 3,5 - 4 раза. Сокращение энергозатрат, удельных затрат на обработку аналогичных деталей в условиях термических участков малых предприятий составило 15-20%.

Пример 3.

Якоря электроклапанные регулирования расхода газов из магнитомягких сталей 16Х-ВИ, механически обработанные для карбонитрирования в порошковой смеси, вначале обматывали по цилиндрической части (фиг.6) поливинилхлоридной лентой с нанесением на липкую часть состава из равных количеств древесного угля, карбамида и трилона-Б. Карбонитрирование вели в вакуумной реторте печи СНОЛ-1,6.2,5.1,0/10И2-М, разогретой до 1000°С, помещая контейнеры в засыпке из порошка этого же состава с плотной упаковкой в рабочее пространство, выдерживая в течение 6 часов в реторте при остаточном давлении 80 Па. Охлаждали контейнеры с якорями выгрузкой из реторты на воздух, а после охлаждения и доводки проводили отпуск при 320°С, 2 часа. Обработка позволила сформировать диффузионный слой толщиной 500-550 мкм микротвердостью H0,5H=630-640, износостойкий при контактном трении, равномерный по толщине, с минимальной зоной 3-6 мкм поверхностного «внутреннего» окисления (фиг.6), что невыполнимо во всех ранее известных способах обработки. Одновременно сердцевина якорей имела крупнозернистую структуру, определяющую оптимальные магнитные свойства, коэрцитивную силу НC=48-50 А/м и магнитную индукцию B50=1,45-1,49 Тл, что позволило иметь ресурс работы клапанов на уровне 107 циклов, что превышает ресурс работы клапанов, обработанных способом, описанным в ближайшем аналоге. Энергозатраты при совмещении отжига на заданные магнитные характеристики с упрочняющей химико-термической обработкой уменьшились в 1,2 раза. Технология позволяла соблюдать экологическую безопасность, была проста в осуществлении, доводка алмазной пастой была минимальной на глубину не более 20 мкм.

Способ карбонитрирования деталей из высокохромистых сталей, включающий помещение деталей в контейнер и их засыпку порошковой смесью из активированного древесного угля, карбамида и трилона-Б при температуре карбонитрирования 960-980°С, отличающийся тем, что используют упомянутую порошковую смесь, в которой компоненты содержатся в соотношении 1:1:1, перед помещением в контейнер с порошковой смесью детали покрывают обмоткой из поливинилхлоридной клейкой ленты, на липкую часть которой предварительно наносят подготовленную для карбонитрирования порошковую смесь, после засыпки деталей в контейнере порошковой смесью его переносят в вакуумную реторту с остаточным давлением 50-80 Па, предварительно разогретую до температуры 980-1000°С, и выдерживают в течение 4-6 ч при температуре карбонитрирования 960-980°С, затем проводят закалку в масле от температуры карбонитрирования, после закалки проводят охлаждение деталей в контейнере на воздухе, затем проводят отпуск на воздухе при температуре 250-320°С в течение 2-3 ч.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к изготовлению упрочняемого химико-термической обработкой концевого инструмента из титановых сплавов, предназначенного для шлифования, резания и доводки прецизионных деталей из мягких термостойких керамик, и может быть использовано в приборостроении, электронике и ювелирном деле.

Изобретение относится к области металлургии, а именно к способам химико-термической обработки сталей, и может быть использовано в машиностроении для упрочнения стальных мелкоразмерных деталей и инструмента.

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей с формированием диффузионных и поверхностных слоев с повышенной износостойкостью и высокой прирабатываемостью в условиях трения металла о металл, и может быть использовано в машиностроении.

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей, оснастки и инструмента. .
Изобретение относится к химико-термической обработке металлов и сплавов, в частности к процессам скоростной нитроцементации в пастах. .

Изобретение относится к области металлургии, в частности к термической и химико-термической обработке деталей из магнитомягкой высокохромистой стали, используемой для изготовления корпусов, магнитопроводов, сердечников электромагнитных клапанов подачи рабочих газов в электрических реактивных двигателях малой тяги.
Изобретение относится к химико-термической обработке металлов, в частности к составам паст, применяемых для цианирования деталей оборудования на предприятиях машиностроительной и металлургической промышленности.

Изобретение относится к металлургии, в частности к химико-термической обработке углеродистых и легированных сталей и изделий из них, и может найти применение в автотракторостроении, ремонте и восстановлении двигателей пар трения в условиях машиностроительных предприятий серийного и опытного производств, а также в инструментальных производствах большинства отраслей промышленности.

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей и инструментов, и может найти применение в машиностроении, инструментальной промышленности.

Изобретение относится к химико-термической обработке металлов и сплавов, может быть использовано для поверхностного упрочнения деталей машин и инструмента из штамповых сталей в машиностроительной, металлургической, химической, инструментальной и других отраслях промышленности. Способ нитроцементации деталей из штамповых сталей включает приготовление пасты смешиванием, нанесение пасты на детали и нагрев с выдержкой. При смешивании пасты в нее дополнительно вводят пастообразователь - нитроцеллюлозный лак НЦ 222 и газовую сажу ДГ-100 при следующем соотношении компонентов, мас.%: железосинеродистый калий K4Fe(СN)6 - 20-30, нитроцеллюлозный лак НЦ 222 - 15-20, газовая сажа ДГ-100 - остальное. Нагрев проводят до температуры 680°C с выдержкой при этой температуре в течение 3 часов, затем детали охлаждают в масле и подвергают низкому отпуску при температуре 200°C в течение 2 часов. Обеспечивается повышение пластичности нитроцементованных диффузионных слоев и ударной вязкости, что приводит к повышению эксплуатационной стойкости штампа. 1 табл., 1 пр.

Изобретение относится к области цементации стальных изделий и может быть использовано для поверхностного упрочнения деталей машин и механизмов путем их термообработки в среде твердого карбюризатора. Карбюризатор для цементации изделий из низкоуглеродистой стали содержит высокодисперсную сажу в виде побочного продукта неполного сгорания природного газа в газоиспользующем теплогенерирующем оборудовании газораспределительных и компрессорных станций магистральных газопроводов, чугунную стружку со средним размером гранул 0,5 мм и карбонат бария, при следующем соотношении компонентов, мас.%: высокодисперсная сажа - 80, чугунная стружка - 10 и карбонат бария - 10. Обеспечивается требуемое диффузионное насыщение стальных изделий углеродом, достигается равномерность глубины слоя по площади изделия и снижаются энергетические затраты. 3 табл., 2 пр.
Изобретение относится к химико-термической обработке конструкционных и инструментальных сталей и может быть использовано для поверхностного упрочнения деталей машин и инструмента в машиностроительной, металлургической, химической, инструментальной и других отраслях промышленности. Способ нитроцементации деталей из штамповых сталей включает приготовление пасты путем смешивания железосинеродистого калия K4Fe(CN)6 и газовой сажи ДГ-100, нанесение пасты на изделие, нагрев с выдержкой, охлаждение в масле и низкий отпуск. При приготовлении пасты в нее дополнительно вводят бентонит и маршалит при следующем соотношении компонентов, мас.%: железосинеродистый калий K4Fe(CN)6 - 24-34, бентонит - 12, маршалит - 24, газовая сажа ДГ-100 - остальное, а в качестве пастообразователя используют поливинилацетатную эмульсию, приготовленную из клея ПВА (ГОСТ 18992-80) - 50%, метанола или этанола - 10% и воды - 40%. Нагрев проводят в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl-50, Na2CO3-40, NaOH-10, при температуре 600-750°C с выдержкой при этой температуре в течение 0,5-3 часов. Затем образцы охлаждают в масле и проводят низкотемпературный отпуск при температуре 150-200°C. Обеспечивается повышение скорости нитроцементации и снижение трудоемкости процесса, расширение температурного интервала, повышение равномерности нагрева деталей и повышение экологической безопасности. 1 пр.
Изобретение относится к способу нитроцементации деталей из конструкционных или инструментальных сталей и может быть использовано для поверхностного упрочнения деталей машин и инструмента в машиностроительной, металлургической, химической и инструментальной промышленности. Осуществляют приготовление пасты путем смешивания железосинеродистого калия K4Fe(CN)6 и газовой сажи ДГ-100, нанесение пасты на изделие, нагрев с выдержкой, охлаждение в масле и низкий отпуск. При приготовлении пасты в нее дополнительно вводят карбонат бария, бентонит, маршалит и пастообразующую жидкость в виде поливинилацетатной эмульсии при следующем соотношении компонентов, мас.%: железосинеродистый калий K4Fe(CN)6 - 16-20, карбонат бария ВаСO3 - 14-18, бентонит - 12, маршалит - 24, газовая сажа ДГ-100 - остальное, пастообразующая жидкость, об. %: поливинилацетатная эмульсия - 50, этанол - 10, вода - 40. Затем проводят нагрев в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl - 50, Na2CO3 - 50 при температуре 750-950°С с выдержкой при этой температуре в течение 1,0-6,0 часов, после чего образцы охлаждают в масле и проводят низкотемпературный отпуск при температуре 150-200°С. Обеспечивается повышение скорости нироцементации и снижение трудоемкости этого процесса, расширение температурного интервала, повышение равномерности нагрева стальных деталей и экологической безопасности. 1 пр.
Изобретение относится к химико-термической обработке конструкционных и инструментальных сталей и может быть использовано для поверхностного упрочнения деталей машин и инструмента в машиностроительной, металлургической, химической и инструментальной промышленности. Способ нитроцементации деталей включает приготовление пасты путем смешивания железосинеродистого калия K4Fe(CN)6, газовой сажи ДГ-100, карбамида, бентонита, маршалита, а также пастообразующей жидкости, при следующем соотношении компонентов, мас.%: железосинеродистый калий K4Fe(CN)6 - 16, карбамид (NH2)2CO - 18, бентонит - 12, маршалит - 24, газовая сажа ДГ-100 - остальное, пастообразующая жидкость (об.%): поливинилацетатная эмульсия 50%, этанол - 10%, вода - 40%, нанесение пасты на детали, нагрев в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl - 35, Na2CO3 - 35, NaOH - 30, при температуре 550-650°C с выдержкой при этой температуре в течение 0,5-3 часов. Затем детали охлаждают в масле и проводят низкотемпературный отпуск при температуре 150-200°C. Обеспечивается повышение скорости нитроцементации и снижение трудоемкости процесса, расширение температурного интервала, повышение равномерности нагрева деталей и повышение экологической безопасности. 1пр.
Наверх