Способ определения искусственной окраски алмаза

Изобретение относится к области исследования алмаза. Способ включает регистрацию спектров оптической плотности кристаллов алмаза в инфракрасном диапазоне с использованием спектрометра. После регистрации спектров оптической плотности проводят выявление полос поглощения. По набору и относительной интенсивности полос поглощения в диапазоне 1360-7000 см-1 проводят определение природного или искусственного происхождения окраски. Техническим результатом является определение признаков искусственного радиационного облучения, а также признаков искусственного радиационного облучения и последующего отжига кристаллов алмаза.

 

Изобретение относится к области исследования драгоценных камней и может использоваться в геммологи, ювелирной отрасли, криминалистике, коммерческой оценке, искусствоведении и в других сферах обращения алмаза, в том числе бриллиантов и изделий из них.

Известен способ и аппаратура его реализации (пат. US 3794424, опубл. 26.02.1974) определения цвета бриллиантов, заключающийся в регистрации интенсивности прошедшего через бриллиант и отразившегося от его поверхностей света.

Недостатками способа являются необходимость использования специальной аппаратуры и демонтажа драгоценного камня из изделия, невозможность выявления искусственной обработки и исследования черных кристаллов.

Известен метод идентификации и/или классификации драгоценных камней с использованием полихроматического спектрометра (пат. DE 19610393, опубл. 18.09.1997), заключающийся в регистрации интенсивности прошедшего через драгоценный камень и/или отразившегося от его поверхностей света диапазона 250-1000 нм с использованием оптоволоконной системы для освещения и сбора прошедшего через кристалл и отразившегося от его граней света. По полученным спектрам оптической плотности проводится идентификация и/или классификация драгоценных камней.

Недостатками способа являются необходимость использования специальной аппаратуры, невозможность выявления искусственной обработки, непригодность для исследования черных кристаллов.

Известен способ (пат. US 6377340 B1, опубл. 23.04.2002) выявления высокотемпературной высокобарической обработки алмаза, включающий регистрацию спектров фотолюминесценции алмаза при температуре жидкого азота и выделение полос люминесценции, свидетельствующих об искусственной обработке.

Недостатками способа являются отсутствие люминесценции у кристаллов алмаза, подвергнутых облучению с большими дозами.

Известен способ проверки природного происхождения зеленой окраски алмаза (пат. GB 0122055, опубл. 12.09.2001), заключающийся в регистрации с помощью конфокального микроскопа спектра фотолюминесценции кристалла при возбуждении в области 630 нм, на различном расстоянии от поверхности кристалла.

Недостатком способа является отсутствие люминесценции у кристаллов алмаза, подвергнутых облучению с большими дозами, а также невозможность разделения природных кристаллов с равномерной по объему окраской, от лабораторно облученных кристаллов.

Известен способ идентификации и определения региона происхождения драгоценных камней (пат. US 6515738, опубл. 04.02.2003), принятый за прототип, заключающийся в определении оптической плотности драгоценных камней вдоль выбранных кристаллографических направлений на фиксированных длинах волн, в том числе инфракрасного диапазона, вычислении соотношений оптической плотности на этих длинах волн, или концентрации примесей, или дефектов кристаллической структуры, и сравнении полученных результатов с эталонными данными.

Недостатком этого способа является необходимость ориентировки образца по выбранным кристаллографическим направлениям, а также отсутствие критериев выявления радиационного облучения, в том числе искусственного радиационного облучения.

Технический результат заключается в:

1) выявлении признаков искусственного радиационного облучения;

2) выявлении признаков искусственного радиационного облучения и последующего отжига кристаллов алмаза.

Технический результат достигается тем, что проводят облучение кристаллов электромагнитным излучением инфракрасного диапазона, определяют значения оптической плотности в инфракрасном диапазоне, выделяют характеристические полосы поглощения.

Согласно изобретению регистрацию значений оптической плотности производят в произвольном направлении, затем проводят определение природного или искусственного происхождения окраски по набору и относительной интенсивности полос поглощения в диапазоне 1360-7000 см-1.

Способ осуществляется следующим образом. В инфракрасном спектрометре, в том числе оснащенном микроскопом, регистрируют фоновый спектр излучения I0(v). Затем исследуемый кристалл фиксируется в держателе и регистрируется спектр света прошедшего через образец. Затем рассчитывается спектр оптической плотности D(v)=lg I0(v)/I(v). Спектр оптической плотности представляет собой суперпозицию: 1) полос поглощения одинаковых для всех кристаллов алмаза - двух- и трехфононное поглощение в области 1500-4000 см-1; 2) полос поглощения, содержащих азот дефектов кристаллической структуры A, B1, B2, C в диапазоне 500-1390 см-1, структурно связанного водорода 1405, 3107 см-1; 3) полос поглощения собственных дефектов кристаллической структуры, возникающих как непосредственно после радиационного облучения, так и после последующей термической обработки. Под радиационным облучением понимается облучение кристаллов алмаза электронами, протонами, нейтронами или α-частицами. Непосредственно после облучения кристаллы приобретают голубовато-зеленый или зеленый цвет, насыщенность которого зависит от дозы облучения. Непосредственно после облучения в спектрах поглощения кристаллов в инфракрасном диапазоне возникает только полоса поглощения с максимумом около 1530 см-1, а при высоких дозах искусственного облучения, приводящих к черной окраске облучаемых кристаллов, возникает серое, не имеющее структурных особенностей поглощение в диапазоне 2000-7000 см-1. В кристаллах с природной черной окраской радиационного происхождения серое поглощение в диапазоне 2000-7000 см-1 отсутствует. При термической обработке облученных кристаллов до температур 600°С появляются полосы поглощения с максимумами около 1570, 1356, 1451 см-1. Менее выраженные полосы поглощения с максимумами 1902, 1924, 1385, 1393, 1406, 1418, 1619, 1057 см-1 появляются, исчезают или достигают своего максимального значения вследствие отжига кристаллов до температуры 600°С. При температурах выше 800°С появляются полосы с максимумами около 1936 и 2024 см-1. При отжиге до температур около 1100°С перечисленные полосы исчезают, но появляются полосы с максимумами около 1573, 1857, 4434, 4941 и 5171 см-1. Таким образом, набор и относительная интенсивность узких полос радиационного происхождения в диапазоне 1360-7000 см-1 определяется дозой, интенсивностью радиационного облучения, а также режимами отжига кристаллов алмаза после облучения.

Выявление искусственной окраски алмаза, наведенной радиационным облучением, производится по следующим критериям.

1) Если кристалл имеет черный цвет, а в спектре поглощения выявляется только полоса поглощения 1430 см-1, то окраска имеет природное происхождение.

2) Если кристалл имеет черный цвет, а в спектре поглощения выявляется полоса поглощения 1430 с-1, а также серое, не имеющее структурных особенностей поглощение в диапазоне 2000-7000 см-1, то окраска вызвана искусственным радиационным облучением.

3) Если в спектре поглощения регистрируются полосы с максимумами около 1570, 1356, 1451 см-1, то после радиационного облучения кристалл был подвергнут отжигу до температуры около 600°С.

4) Если в спектре поглощения регистрируются полосы с максимумами около 4960 и 5174 см-1, то после радиационного облучения кристалл был подвергнут отжигу до температуры около 1100°С.

Способ позволяет определять признаки искусственного происхождения окраски кристаллов алмаза, наведенной радиационным облучением, а также радиационным облучением с последующим отжигом кристаллов. Преимуществом способа является возможность исследования кристаллов, непрозрачных в видимом диапазоне, и кристаллов с очень низким уровнем люминесценции. Способ отличается высокой экспрессностью может быть реализован на стандартных инфракрасных спектрометрах.

Способ определения искусственной окраски алмаза, включающий облучение кристалла алмаза электромагнитным излучением инфракрасного диапазона, регистрацию спектра прошедшего через кристалл света, определение значений оптической плотности кристаллов, выявление полос поглощения, отличающийся тем, что регистрацию значений оптической плотности производят в произвольном направлении, затем проводят определение природного или искусственного происхождения окраски кристалла алмаза по набору и относительной интенсивности полос поглощения в диапазоне 1360-7000 см-1.



 

Похожие патенты:

Изобретение относится к определению ценности драгоценных камней. .
Изобретение относится к исследованиям драгоценных камней и предназначено для идентификации, выявления признаков облагораживания, искусственного происхождения ограненных драгоценных камней, в том числе в изделиях.

Изобретение относится к области исследования драгоценных камней, в частности алмазов. .

Изобретение относится к технологии маркировки алмазного материала. .

Изобретение относится к средствам и способам маркировки ценных изделий, преимущественно драгоценных камней, в частности ограненных алмазов (бриллиантов), и может быть использовано для последующей идентификации данных изделий.

Изобретение относится к устройствам, использующим ультрафиолетовое излучение для тестирования объектов, и предназначено для сортировки алмазов и, в частности, для отбора из природного алмазного сырья и бриллиантов с коричневыми оттенками цвета алмазов, пригодных для высокотемпературной обработки при высоком давлении с целью их обесцвечивания, а именно кристаллов алмаза типа IIa и IIb, и IIB.

Изобретение относится к искусственным ювелирным алмазам, которые могут быть идентифицированы с определенным человеком или животным. .

Изобретение относится к способу и системе для лазерного мечения драгоценных камней и, в частности, к способу и системе гравирования кодов аутентификации. .

Изобретение относится к способам создания внутри алмазов изображений, несущих информацию различного назначения, например коды идентификации, метки, идентифицирующие алмазы

Изобретение относится к способу определения подлинности изделия в виде алмаза или бриллианта. Идентификационную маркировку невидимую невооруженным глазом наносят на алмаз или бриллиант путем воздействия лазерным излучением с длиной волны более 500 нм с одновременным воздействием ультразвуком посредством инструмента, расположенного на поверхности участка. После этого сохраняют минимум два интерференционных изображения идентификационной маркировки изделия посредством зондирующего излучения волнами различной длины вместе с данными о расположении определенного участка изделия и угле падения зондирующего излучения. Определение подлинности и соответствия сохраненным значениям осуществляют путем направления зондирующего излучения на упомянутый участок с созданием минимум двух интерферационных изображений идентификационной маркировки, которые затем сравнивают с сохраненными интерферационными изображениями, совпадение которых означает подлинность маркировки. Технический результат заключается в обеспечении гарантии уникальности маркировки, защиты от подделок и надежной идентификации во время проверки подлинности. 3 з.п. ф-лы, 2 ил., 2 пр.

Настоящее изобретение относится к автоматической ориентации драгоценного камня. Заявленная группа изобретений включает устройство для ориентации драгоценных камней, устройство для сортировки искусственных драгоценных камней и способ ориентации отдельных драгоценных камней. Причем устройство для ориентации драгоценных камней содержит подвижную поверхность, обеспечивающую путь перемещения для этих драгоценных камней, пару противостоящих стенок, проходящих по существу вдоль указанного пути перемещения, и вибратор, выполненный с возможностью генерирования соответствующего колебательного движения между указанной парой стенок и подвижной поверхностью в направлении, по существу перпендикулярном указанному пути перемещения, так что при использовании указанная пара стенок сообщает драгоценным камням поперечную силу и тем самым вынуждает их ориентироваться в наиболее устойчивое положение по мере их продвижения по пути перемещения. Заявленный способ ориентации отдельных драгоценных камней содержит следующие этапы: размещение указанных драгоценных камней на пути перемещения; использование пары противостоящих стенок, проходящих по существу вдоль пути перемещения; и генерирование соответствующего колебательного движения между указанной парой стенок и указанным путем перемещения в направлении, по существу перпендикулярном этому пути перемещения, так что указанная пара стенок сообщает поперечную силу драгоценного камням и тем самым вынуждает их ориентироваться в наиболее устойчивое положение по мере их продвижения по пути перемещения. Технический результат заключается в обеспечении автоматизированного процесса, который обеспечивает увеличение скорости и эффективности ориентации драгоценного камня. 3 н. и 29 з.п. ф-лы, 7 ил.

Изобретение относится к средствам для исследования драгоценных камней. Описаны аппарат и способ исследования и, в качестве опции, сортировки драгоценных камней. Аппарат содержит вакуумное сопло для извлечения драгоценных камней из подаваемого множества драгоценных камней; транспортирующий механизм для транспортирования сопла и удерживаемого им драгоценного камня к одному или более мест измерения; измерительную систему, содержащую множество измерительных устройств, установленных вблизи одного или более мест измерения и сконфигурированных для измерения одного или более свойств драгоценного камня. По меньшей мере одно из множества измерительных устройств расположено вблизи по меньшей мере одного из указанных мест измерения с возможностью измерять по меньшей мере одно из указанных свойств драгоценного камня, удерживаемого соплом. Транспортирующий механизм сконфигурирован с возможностью последовательной доставки драгоценного камня, удерживаемого соплом, к множеству измерительных устройств, принимающих драгоценный камень в контролируемые моменты и в контролируемых местах. Аппарат содержит управляющую систему, функционально связанную с вакуумным соплом и с измерительной системой и сконфигурированную для обеспечения подхода драгоценного камня к единственному или каждому месту измерения в известное измерительной системе время, и систему приложения положительного давления для отделения драгоценного камня от сопла в зоне сбрасывания. Предложены также способ сортировки драгоценных камней, способ исследования драгоценных камней, сопло для удерживания драгоценного камня. Обеспечивается быстрый, надежный и эффективный процесс сортировки камней. 5 н. и 31 з.п. ф-лы, 8 ил.
Наверх